Комнатные растения, растения Вашего сада и огорода, грибы, плодовые деревья, кустарники, цветы.

Всё о растениях



Интересные факты

Овощи

Грибы

Комнатные растения

Контакты

Электро провода и нагрузка на них


Выбор сечения медного и алюминиевого провода кабеля для электропроводки по нагрузке

Стандартная квартирная электропроводка рассчитывается на максимальный ток потребления при длительной нагрузке 25 ампер (на такую силу тока выбирается и автоматический выключатель, который устанавливается на вводе проводов в квартиру) выполняется медным проводом сечением 4,0 мм2, что соответствует диаметру провода 2,26 мм и мощности нагрузки до 6 кВт.

Согласно требований п 7.1.35 ПУЭ сечение медной жилы для квартирной электропроводки должно быть не менее 2,5 мм2, что соответствует диаметру проводника 1,8 мм и силе тока нагрузки 16 А. К такой электропроводке можно подключать электроприборы суммарной мощностью до 3,5 кВт.

Что такое сечение провода и как его определить

Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.

Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.

Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.

Выбор сечения медного провода электропроводки по силе тока

Величина электрического тока обозначается буквой «А» и измеряется в Амперах. При выборе действует простое правило, чем сечение провода больше, тем лучше, по этому округляют результат в большую сторону.

Приведенные мною данные в таблице основаны на личном опыте и гарантируют надежную работу электропроводки при самых неблагоприятных условиях ее прокладки и эксплуатации. При выборе сечения провода по величине тока не имеет значение, переменный это ток или постоянный. Не имеют значения также величина и частота напряжения в электропроводке, это может быть бортовая сеть автомобиля постоянного тока на 12 В или 24 В, летательного аппарата на 115 В частотой 400 Гц, электропроводка 220 В или 380 В частотой 50 Гц, высоковольтная линия электропередачи на 10000 В.

Если не известен ток потребления электроприбором, но известны напряжение питания и мощность, то рассчитать ток можно с помощью приведенного ниже онлайн калькулятора.

Следует отметить, что на частотах более 100 Гц в проводах при протекании электрического тока начинает проявляться скин-эффект, заключающийся в том, что с увеличением частоты ток начинает «прижиматься» к внешней поверхности провода и фактическое сечение провода уменьшается. Поэтому выбор сечения провода для высокочастотных цепей выполняется по другим законам.

Определение нагрузочной способности электропроводки 220 В выполненной из алюминиевого провода

В давно построенных домах электропроводка, как правило, выполнена из алюминиевых проводов. Если соединения в распределительных коробках выполнены правильно, срок службы алюминиевой проводки может составлять и сто лет. Ведь алюминий практически не окисляется, и срок службы электропроводки будет определяться только сроком службы пластмассовой изоляции и надежностью контактов в местах присоединения.

В случае подключения дополнительных энергоемких электроприборов в квартире с алюминиевой электропроводкой необходимо определить по сечению или диаметру жил проводов способность ее выдержать дополнительную мощность. По приведенной ниже таблице это легко сделать.

Если у Вас проводка в квартире выполнена из алюминиевых проводов и возникла необходимость подключить вновь установленную розетку в распределительной коробке медными проводами, то такое соединение выполняется в соответствии с рекомендациями статьи Соединение алюминиевых проводов.

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности. Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке.

В случае если сила потребляемого тока электроприбором не известна, то ее можно измерять с помощью амперметра.

Таблица потребляемой мощности и силы тока бытовыми электроприборами при напряжении питания 220 В

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит 7 А + 8 А + 3 А + 4 А = 22 А. С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбрать сечение провода можно не только по силе тока но и по величине потребляемой мощности. Для этого нужно составить перечень всех планируемых для подключения к данному участку электропроводки электроприборов, определить, какую мощность потребляет каждый из них по отдельности. Далее сложить полученные данные и воспользоваться ниже приведенной таблицей.

Если имеется несколько электроприборов и для некоторых известен ток потребления, а для других мощность, то нужно определить из таблиц сечение провода для каждого из них, а затем полученные результаты сложить.

Выбор сечения медного провода по мощности для с бортовой сети автомобиля 12 В

Если при подключении к бортовой сети автомобиля дополнительного оборудования известна только его мощность потребления, то определить сечение дополнительной электропроводки можно с помощью ниже приведенной таблицы.

Выбор сечения провода для подключения электроприборовк трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В.

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность. Потребляемая электрическая мощность электродвигателем с, учетом КПД и сos φ приблизительно в два раза больше, чем создаваемая на валу, что необходимо учитывать при выборе сечения провода исходя из мощности двигателя, указанной в табличке.

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, в шильдике приведенном на фотографии, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А. Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди. Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.

А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод. Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее. Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.

После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.

Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.

Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах. Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.

Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.

Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской. Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным. Для внутренней проводки удобнее применять плоский кабель ВВГ.

При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов. Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А. А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Онлайн калькуляторы для вычисления сечения и диаметра провода

С помощью онлайн калькулятора, представленного ниже можно решить обратную задачу – определить по сечению диаметр проводника.

Как вычислить сечение многожильного провода

Многожильный провод, или как его называют еще многопроволочный или гибкий, представляет собой свитые вместе одножильные проволочки. Для вычисления сечения многожильного провода нужно сначала вычислить сечение одной проволочки, а затем полученный результат умножить на их число.

Рассмотрим пример. Есть многожильный гибкий провод, в котором 15 жил диаметром 0,5 мм. Сечение одной жилы равно 0,5 мм×0,5 мм×0,785 = 0,19625 мм2, после округления получим 0,2 мм2. Так как у нас в проводе 15 проволочек , то для определения сечения кабеля нужно перемножить эти числа. 0,2 мм2×15=3 мм2. Осталось по таблице определить, что такой многожильный провод выдержит ток 20 А.

Можно оценить нагрузочную способность многожильного провода без замера диаметра отдельного проводника, измеряв общий диаметр всех свитых проволочек. Но так как проволочки круглые, то между ними находятся воздушные зазоры. Для исключения площади зазоров нужно полученный по формуле результат сечения провода умножить на коэффициент 0,91. При замере диаметра надо проследить, чтобы многожильный провод не сплющился.

Рассмотрим на примере. В результате измерений многожильный провод имеет диаметр 2,0 мм. Рассчитаем его сечение: 2,0 мм×2,0 мм×0,785×0,91 = 2,9 мм2. По таблице (смотри ниже) определяем, что данный многожильный провод выдержит ток величиной до 20 А.

Рассчитать сечение многожильного провода удобно с помощью онлайн калькулятора, достаточно ввести диаметр одной проволочки и количество жил в многожильном проводе.

ydoma.info

Таблица зависимости сечения провода от нагрузки

При монтаже электропроводки в квартире или в частном доме очень важно правильно подобрать сечение провода. Если взять слишком толстый кабель, то это «влетит вам в копеечку», так как его цена напрямую зависит от диаметра (сечения) токопроводящих жил. Применение же тонкого кабеля приводит к его перегреву и при несрабатывании защиты возможно оплавление изоляции, короткое замыкание и как следствие — пожар. Наиболее правильным будет выбор сечения провода в зависимости от нагрузки, что отражено в приведенных ниже таблицах.

Сечение кабеля

Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.

Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.

Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5 мм², а на освещение — 1,0-1,5мм².

Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.

Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0мм².

Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении.

При прокладке кабеля в трубе (т.е. в любых закрытых пространствах) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.

Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).

Таблица нагрузок по сечению кабеля:

Сечение кабеля, мм²Проложенные открытоПроложенные в трубе
медьалюминиймедьалюминий
ток, Амощность, кВтток, Амощность, кВтток, Амощность, кВтток, Амощность, кВт
220В380В220В380В220В380В220В380В
0.5112.4
0.75153.3
1173.76.41435.3
1.52358.7153.35.7
2.5306.611245.29.1214.67.9163.56
44191532712275.910214.67.9
6501119398.514347.412265.79.8
10801730601322501119388.314
161002238751628801730551220
25140305310523391002238651424
35170376413028491352951751628

Для самостоятельного расчета необходимого сечение кабеля, например, для ввода в дом, можно воспользоваться кабельным калькулятором или выбрать необходимое сечение по таблице.

Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабели в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя.

При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п.

    Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
  • поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
  • поправочный коэффициент на температуру окружающей среды;
  • поправочный коэффициент для кабелей, прокладываемых в земле;
  • поправочный коэффициент на различное число работающих кабелей, проложенных рядом.

Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.

Если рассмотреть сечение кабеля, то это круг с определенным диаметром. Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².

Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?

Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.

Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.

Соотношение тока и сечения

Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами.

Чем больше их площадь, тем большей силы ток, через них пройдет, тем большую нагрузку такой провод выдерживает. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.

Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу.

Сечение жилы провода, мм2Медные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, Вт
0.561300
0.75102200
1143100
1.5153300102200
2194200143100
2.5214600163500
4275900214600
6347500265700
105011000388400
1680176005512100
25100220006514300

К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.

Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке.

    Для примера обозначим некоторые из них:
  1. Чайник – 1-2 кВт.
  2. Микроволновка и мясорубка 1,5-2,2 кВт.
  3. Кофемолка и кофеварка – 0,5-1,5 кВт.
  4. Холодильник 0,8 кВт.

Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.

Чем отличается кабель от провода

Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.

Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.

Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.

Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.

Выбор кабеля

Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.

Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.

При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.

Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то предпочтительно использовать моножилу.

Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.

В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.

Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Медь или алюминий

В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.

Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.

Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».

Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.

Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.

Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Зачем производится расчет

Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.

Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.

Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.

Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.

Что нужно знать

Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.

Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.

Таблица потребляемой мощности/силы тока бытовыми электроприборами

ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина2000 – 25009,0 – 11,4
Джакузи2000 – 25009,0 – 11,4
Электроподогрев пола800 – 14003,6 – 6,4
Стационарная электрическая плита4500 – 850020,5 – 38,6
СВЧ печь900 – 13004,1 – 5,9
Посудомоечная машина2000 – 25009,0 – 11,4
Морозильники, холодильники140 – 3000,6 – 1,4
Мясорубка с электроприводом1100 – 12005,0 – 5,5
Электрочайник1850 – 20008,4 – 9,0
Электрическая кофеварка630 – 12003,0 – 5,5
Соковыжималка240 – 3601,1 – 1,6
Тостер640 – 11002,9 – 5,0
Миксер250 – 4001,1 – 1,8
Фен400 – 16001,8 – 7,3
Утюг900 –17004,1 – 7,7
Пылесос680 – 14003,1 – 6,4
Вентилятор250 – 4001,0 – 1,8
Телевизор125 – 1800,6 – 0,8
Радиоаппаратура70 – 1000,3 – 0,5
Приборы освещения20 – 1000,1 – 0,4

После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:

1) Формула расчета силы тока для однофазной сети 220 В:

расчет силы тока для однофазной сети

где Р — суммарная мощность всех электроприборов, Вт; U — напряжение сети, В; КИ= 0.75 — коэффициент одновременности; cos для бытовых электроприборов- для бытовых электроприборов.

2) Формула для расчета силы тока в трехфазной сети 380 В:

расчет силы тока для трехфазной сети

Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.

На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.

    Медь, по сравнению с алюминием, более эффективна:
  • она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
  • меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
  • проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.

Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.

Расчет сечения медных проводов и кабелей

Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.

Как известно, вся нагрузка делится на две группы: силовую и осветительную.

В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).

Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.

Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.

Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.

Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.

При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.

Выбор сечения кабеля по мощности

Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.

Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.

Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.

Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.

Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.

Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.

Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.

Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.

Таблица проводников под допустимый максимальный ток для их использования в проводке:

С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)

Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.

Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.

А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.

Общепринятые сечения для проводки в квартире

Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.

Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.

Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.

Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.

Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)

Токовые нагрузки в сетях с постоянным током

В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).

Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).

Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:

U = ((p l) / S) I

    где:
  • U — напряжение постоянного тока, В
  • p — удельное сопротивление провода, Ом*мм2/м
  • l — длина провода, м
  • S — площадь поперечного сечения, мм2
  • I — сила тока, А

Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.

Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.

Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.

Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.

Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.

Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.

Что необходимо для расчёта по нагрузке

Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.

Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.

Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:

Для однофазной сети напряжением 220 В:

    Где:
  • Р – это суммарная мощность для всех электроприборов, Вт;
  • U — напряжение сети, В;
  • COSφ — коэффициент мощности.

Для трёхфазной сети напряжением 380 В:

Наименование прибораПримерная мощность, Вт
LCD-телевизор140-300
Холодильник300-800
Пылесос800-2000
Компьютер300-800
Электрочайник1000-2000
Кондиционер1000-3000
Освещение300-1500
Микроволновая печь1500-2200

Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.

Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А. Сечение токо- проводящих

жил, мм

Медные жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток, АМощность, кВтТок, АМощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.

Сечение токо- проводящих

жил, мм

Алюминиевые жилы проводов и кабелей
Напряжение 220ВНапряжение 380В
Ток, АМощность, кВтТок, АМощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
1050113925,7
166013,25536,3
258518,77046,2
35100228556,1
5013529,711072,6
7016536,314092,4
9520044170112,2
12023050,6200132

Расчёт для помещений

Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.

Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.

Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.

Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.

Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!

    Наиболее распространенные марки проводов и кабелей:
  1. ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  2. АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
  3. ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
  4. ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
  5. ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
  6. ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).

Источники: cabel.com.ua, xn-----7kcglddctzgerobebivoffrddel5x.xn, electricvdome.ru, onlineelektrik.ru, prom-sn.ru

first-apartment.ru

Выбор мощности, тока и сечения проводов и кабелей

12.12.2018

Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки. Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока.

В общем виде порядок выбора сечения силовой линии питания можно определить следующим образом:

При монтаже капитальных строений для прокладки внутренних силовых сетей допускается использование только кабелей с медными жилами (ПУЭ п. 7.1.34).

Питание электроприемников от сети 380/220 В должно выполняться с системой заземления TN-S или TN-C-S (ПУЭ п. 7.1.13), поэтому все кабели питающие однофазные потребители должны содержать три проводника:           — фазный проводник           — нулевой рабочий проводник

          — защитный (заземляющий проводник)

Кабели, питающие трехфазные потребители должны содержать пять проводников:           — фазные проводники (три штуки)           — нулевой рабочий проводник

          — защитный (заземляющий проводник)

Исключением являются кабели, питающие трехфазные потребители без вывода для нулевого рабочего проводника (например асинхронный двигатель с к. з. ротором). В таких кабелях нулевой рабочий проводник может отсутствовать.

Из всего многообразия кабельной продукции, представленной на современном рынке, жестким требованиям электро и пожаробезопасности соответствуют только два типа кабелей: ВВГ и NYM.

Внутренние силовые сети должны быть выполнены кабелем не распространяющим горение, то есть с индексом «НГ» (СП–110–2003 п. 14.5). Кроме того, электропроводки в полостях над подвесными потолками и в пустотах перегородок, должны быть с пониженным дымовыделением, на что указывает индекс «LS».

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы. То есть для расчета мощности групповой линии освещения или групповой розеточной линии необходимо просто сложить все мощности потребителей данной группы.

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220.

1. Для определения сечения вводного силового кабеля необходимо подсчитать суммарную мощность всех планируемых к использованию энергопотребителей и умножить ее на коэффициент 1,5. Еще лучше – на 2, чтобы создать запас прочности.

2. Как известно, проходящий через проводник электрический ток (а он тем больше, чем больше мощность питаемого электроприбора) вызывает нагрев этого проводника. Допустимый для наиболее распространенных изолированных проводов и кабелей нагрев составляет 55-75°С. Исходя из этого и выбирается сечение жил вводного кабеля. Если подсчитанная общая мощность будущей нагрузки не превышает 10 — 15 кВт, достаточно использовать медный кабель с сечением жилы 6 мм2, алюминиевый – 10 мм2. При увеличении мощности нагрузки вдвое сечение увеличивается втрое.

3. Приведенные цифры справедливы для однофазной открытой прокладки силового кабеля. Если он прокладывается скрыто, сечение увеличивается в полтора раза. При трехфазной проводке мощность потребителей может быть увеличена вдвое, если прокладка открытая, и в 1,5 раза при скрытой прокладке.

4. Для электропроводки розеточных и осветительных групп традиционно используют провода, имеющие сечение 2,5 мм2 (розетки) и 1,5 мм2 (освещение). Поскольку многие кухонные приборы, электроинструменты и отопительные приборы являются очень мощными потребителями электроэнергии, их положено запитывать отдельными линиями. Здесь руководствуются следующими цифрами: провод, обладающий сечением 1,5 мм2, способен «потянуть» нагрузку в 3 кВт, сечением 2,5 мм2 – 4,5 кВт, для 4 мм2 допустимая мощность нагрузки уже 6 кВт, а для 6 мм2 – 8 кВт.

Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:

— для медного провода 10 ампер на миллиметр квадратный,

— для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.

Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм2 из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

Допустимый длительный ток для проводов и шнуров с резиновой и ПХВ изоляцией с медными жилами

Предельно допустимые значения (темп-ра жил +65 °С, воздуха +25 °С )        
В кабельном коробе двух одножильных В кабельном коробе четырех одножильных В кабельном коробе одного трехжильного
 
Допустимый длительный ток для проводов с резиновой и ПХВ изоляцией с алюминиевыми жилами

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,

найритовой или резиновой оболочке, бронированных и небронированных

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

— Медь, U = 220 B, одна фаза, двухжильный кабель

Р, кВт

1

2

3

3,5

4

6

8

I, A

4,5

9,1

13,6

15,9

18,2

27,3

36,4

Сечение токопроводящей жилы, мм2

1

1

1,5

2,5

2,5

4

6

Макс. допустимая длина кабеля при указанном сечении, м*

34,6

17,3

17,3

24,7

21,6

23

27

— Медь, U = 380 B, три фазы, трехжильный кабель

Р, кВт

6

12

15

18

21

24

27

35

I, A

9,1

18,2

22,8

27,3

31,9

36,5

41

53,2

Сечение токопроводящей жилы, мм2

1,5

2,5

4

4

6

6

10

10

Макс. допустимая длина кабеля при указанном сечении, м*

50,5

33,6

47,6

39,7

51

44,7

66,2

51

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках

 

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

0,35

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

0,75

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

   

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих):

   

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

   

однопроволочных

0,5

многопроволочных (гибких)

0,35

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

   

по стенам, конструкциям или опорам на изоляторах;

2,5

4

вводы от воздушной линии

   

под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

   

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

   

однопроволочных

0,5

многопроволочных (гибких)

0,35

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В

Щелкните мышкой по изображению чтобы увеличить.

Таблица выбора сечения кабеля для оповещателей СОУЭ

Скачать таблицу с формулами расчета — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей

Выбор сечения кабеля для речевого оповещения

Применение огнестойких кабелей в системах АПЗ

Благодаря своим частотным характеристикам огнестойкте кабели марок КПСЭнг-FRLS КПСЭнг-FRHF КПСЭСнг-FRLS КПСЭСнг-FRHF могут быть использованы в качестве:

  • шлейфов для адресно-аналоговых систем пожарной сигнализации;
  • кабелей приёма-передачи данных между приборами контрольными пожарными пожарной сигнализации и приборами управления системы противопожарной защиты;
  • интерфейсного кабеля систем оповещения и управления эвакуацией (СОУЭ);
  • кабеля управления систем автоматического пожаротушения;
  • кабеля управления систем противодымной защиты;
  • интерфейсного кабеля других систем противопожарной защиты.

В качестве справочной информации ниже приведены значения волновых сопротивлений и частотные характеристики различных марко-размеров огнестойких кабелей.

Таблица 1 № п.п. Марка кабеля Волновое сопротивление, Ом 31,0 кГц 1000 кГц
1 КПСЭнг – FRLS 1х2х0.5 КПСЭнг – FRHF 1х2х0.5 120±20 100±15
2 КПСЭнг – FRLS 1х2х0.75 КПСЭнг – FRHF 1х2х0.75 110±15 90±10
3 КПСЭнг – FRLS 1х2х1.0 КПСЭнг – FRHF 1х2х1.0 100±15 80±10
4 КПСЭнг – FRLS 1х2х1.5 КПСЭнг – FRHF 1х2х1.5 90±10 70±10
5 КПСЭнг – FRLS 1х2х2.5 КПСЭнг – FRHF 1х2х2.5 80±10 60±5
Таблица 2 Марка кабеля Коэффициент затухания, дБ/100м 1 кГц 31 кГц 1 МГц 10 МГц 100 МГц
КПСЭнг – FRLS 1х2х0.5 КПСЭнг – FRHF 1х2х0.5 0,12 0,39 2,3 5,8 21,4
КПСЭнг – FRLS 1х2х0.75 КПСЭнг – FRHF 1х2х0.75 0,09 0,28 2,2 5,1 18,9
КПСЭнг – FRLS 1х2х1.0 КПСЭнг – FRHF 1х2х1.0 0,08 0,24 2,1 4,9 18,0
КПСЭнг – FRLS 1х2х1.5 КПСЭнг – FRHF 1х2х1.5 0,07 0,22 2,0 4,4 17,5
КПСЭнг – FRLS 1х2х2.5 КПСЭнг – FRHF 1х2х2.5 0,05 0,20 2,0 4,4 17,5

Общая сравнительная характеристика кабелей для локальной сети

Тип кабеля (10 Мбит/с = около

1 Мб в сек)

Скорость передачи данных (мегабит в секунду) Макс официальная длина сегмента, м Макс неофициальная длина сегмента, м* Возможность восстановления при повреждении / наращивание длины Подверженность помехам Стоимость
Витая пара
Неэкранированная Витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Средняя Низкая
Экранированная витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Низкая Средняя
Кабель полевой П-296 100/10 Мбит/с —— 300(500)/>500 м Хорошая Низкая Высокая
Четырехжильный телефонный кабель 50/10 Мбит/с —— Не более 30 м Хорошая Высокая Очень низкая
Коаксиальный кабель
Тонкий коаксиальный кабель 10 Мбит/с 185 м 250(300) м Плохая Требуется пайка Высокая Низкая
Толстый коаксиальный кабель 10 Мбит/с 500 м 600(700) Плохая Требуется пайка Высокая Средняя
Оптоволокно
Одномодовое оптоволокно 100-1000 Мбит До 100 км —- Требуется спец оборудование Отсутствует  
Многомодовое оптоволокно 1-2 Гбит До 550 м —- Требуется спец оборудование Отсутствует  

*- Передача данных на расстояния, превышающие стандарты, возможна при использовании качественных комплектующих.

Выбор кабелей для систем видеонаблюдения

Чаще всего видеосигналы передаются между устройствами по коаксиальному кабелю. Коаксиальный кабель – это не только самый распространенный, но и самый дешевый, самый надежный, самый удобный и самый простой способ передачи электронных изображений в системах телевизионного наблюдения (СТН).

Коаксиальный кабель выпускается многими изготовителями с самыми разнообразными размерами, формами, цветами, характеристиками и параметрами. Чаще всего рекомендуют использовать кабели типа RG59/U, однако фактически это семейство включает кабели с самыми разнообразными электрическими характеристиками. В системах телевизионного наблюдения и в других областях, где применяются телекамеры и видеоустройства, также широко используются похожие на RG59/U кабели RG6/U и RG11/U.

Хотя все эти группы кабелей во многом похожи друг на друга, у каждого кабеля есть свои собственные физические и электрические характеристики, которые необходимо принимать во внимание.

Все три упомянутые группы кабелей относятся к одному и тому же общему семейству коаксиальных кабелей. Буквы RG означают «radio guide» (радиочастотный волновод), а числа обозначают различные виды кабеля. Хотя у каждого кабеля есть свой номер, свои характеристики и размеры, в принципе все эти кабели устроены и работают одинаково.

Устройство коаксиального кабеля

Наиболее распространенные кабели RG59/U, RG6/U и RG11/U имеют круглое сечение. В любом кабеле есть центральная жила, покрытая диэлектрическим изоляционным материалом, который, в свою очередь, покрыт токопроводящей оплеткой или экраном с целью защиты от электромагнитных помех (ЭМП). Наружное защитное покрытие поверх оплетки (экрана) называется оболочкой кабеля.

Два проводника коаксиального кабеля разделены непроводящим диэлектрическим материалом. Внешний проводник (оплетка) экранирует центральный проводник (жилу) от внешних электромагнитных помех. Защитное покрытие поверх оплетки предохраняет проводники от физических повреждений.

Центральная жила

Центральная жила – главное средство передачи видеосигнала. Диаметр центральной жилы обычно находится в пределах от 14 до 22 калибра по американскому сортименту проводов (AWG). Центральная жила либо медная целиком, либо стальная с медным покрытием (сталь, плакированная медью), в последнем случае жилу также называют неизолированным омедненным проводом (BCW, Bare Copper Weld). Центральная жила кабеля для систем СТН должна быть медной. Кабели, центральная жила которых не полностью медная, а только покрыта медью, имеют намного большее сопротивление контура на частотах видеосигнала, поэтому их нельзяприменять в системах СТН. Чтобы определить тип кабеля, посмотрите на сечение его центральной жилы. Если жила является стальной с медным покрытием, то ее центральная часть будет серебристого цвета, а не медного. От диаметра центральной жилы зависит активное сопротивление кабеля, то есть его сопротивление постоянному току. Чем больше диаметр центральной жилы, тем меньше ее сопротивление. Кабель с центральной жилой большого диаметра (а значит с меньшим сопротивлением) может передавать видеосигнал на большее расстояние с меньшими искажениями, но зато более дорог и менее гибок.

Если условия эксплуатации кабеля таковы, что он может часто изгибаться в вертикальном или горизонтальном направлении, выберите кабель с многожильным центральным проводником, который сделан из большого количества проводов малого диаметра. Многожильный кабель более гибкий по сравнению с одножильным и более стойкий с точки зрения усталости метала при изгибе.

Диэлектрический изоляционный материал

Центральная жила равномерно окружена диэлектрическим изоляционным материалом, обычно это полиуретан или полиэтилен. Толщина слоя этого диэлектрического изолятора одинакова по всей длине коаксиального кабеля, благодаря чему эксплуатационные характеристики кабеля по всей его длине одинаковы. Диэлектрики из пористого или вспененного полиуретана меньше ослабляют видеосигнал, чем диэлектрики из твердого полиэтилена. При расчете потерь по длине для любого кабеля желательны меньшие потери по длине. Кроме того, вспененный диэлектрик придает кабелю большую гибкость, которая облегчает работу монтажников. Но хотя электрические характеристики кабеля с вспененным диэлектрическим материалом более высоки, такой материал может поглощать влагу, которая ухудшает эти характеристики.

Твердый полиэтилен жестче и лучше сохраняет свою форму, чем вспененный полимер, более устойчив к защемлению и сдавливанию, но прокладывать такой жесткий кабель несколько труднее. Кроме того, потери сигнала на единицу длины у него больше, чем у кабеля с вспененным диэлектриком, и это нужно учитывать, если длина кабеля должна быть большой.

Оплетка, или экран

Снаружи диэлектрический материал покрыт медной оплеткой (экраном), которая является вторым (обычно заземленным) проводником сигналов между телекамерой и монитором. Оплетка служит экраном от нежелательных внешних сигналов, или наводок, которые обычно называют электромагнитными помехами (ЭМП) и которые могут неблагоприятно влиять на видеосигнал.

Качество экранирования от электромагнитных помех зависит от содержания меди в оплетке. Коаксиальные кабели рыночного качества содержат неплотную медную оплетку с экранирующим эффектом приблизительно 80%. Такие кабели пригодны для обычных случаев применения, когда электромагнитные помехи малы. Эти кабели хороши в тех случаях, когда они проложены в металлическом кабелепроводе или металлической трубе, которые служат дополнительным экраном.

Если условия эксплуатации не очень хорошо известны и кабель прокладывается не в металлической трубе, которая может служить дополнительной защитой от ЭМП, то лучше выбрать кабель с максимальной защитой от помех или кабель с плотной оплеткой, содержащей больше меди по сравнению с коаксиальными кабелями рыночного качества. Повышение содержания меди обеспечивает лучшее экранирование за счет большего содержания экранирующего материала в более плотной оплетке. Для систем СТН требуются медные проводники.

Кабели, в которых экраном служит алюминиевая фольга или оберточный фольговый материал, не пригодны для систем телевизионного наблюдения (СТН). Такие кабели обычно применяются для передачи радиочастотных сигналов в передающих системах и в системах распределения сигнала с коллективной антенны.

Кабели, в которых экран сделан из алюминия или фольги, могут искажать видеосигналы настолько сильно, что качество изображения упадет ниже уровня, требуемого в системах наблюдения, особенно в том случае, когда длина кабеля велика, поэтому такие кабели не рекомендуется применять в системах СТН.

Внешняя оболочка

Последним компонентом коаксиального кабеля является внешняя оболочка. Для ее изготовления используются различные материалы, но чаще всего поливинилхлорид (ПВХ). Поставляются кабели с оболочкой различных цветов (черные, белые, желтовато-коричневые, серые) – как для наружной установки, так и для установки в помещениях.

Выбор кабеля определяется также следующими двумя факторами: расположение кабеля (внутри помещения или снаружи) и его максимальная длина.

Коаксиальный видеокабель предназначен для передачи сигнала с минимальной потерей от источника с волновым сопротивлением 75 Ом к нагрузке с волновым сопротивлением 75 Ом. Если используется кабель с другим волновым сопротивлением (не 75 Ом), то возникают дополнительные потери и отражения сигналов. Характеристики кабеля определяются рядом факторов (материал центральной жилы, диэлектрический материал, конструкция оплетки и др.), которые следует тщательно учитывать при выборе кабеля для конкретного применения. Кроме того, характеристики передачи сигнала по кабелю зависят от физических условий вокруг кабеля и от метода прокладки кабеля.

Используйте только кабель высокого качества, выбирайте его, внимательно учитывая среду, в которой он будет работать (в помещении или снаружи). Для передачи видеосигналов лучше всего подходит кабель с медной однопроводной жилой, за исключением случая, когда требуется повышенная гибкость кабеля. Если условия эксплуатация таковы, что кабель часто изгибается (например, если кабель подсоединен к сканирующему устройству или камере, которая поворачивается по горизонтали и по вертикали), требуется специальный кабель. Центральный проводник в таком кабеле многожильный (скручен из тонких жил). Проводники кабеля должны быть сделаны из чистой меди. Не применяйте кабель, проводники которого сделаны из стали, плакированной медью, потому что такой кабель плохо передает сигнал на тех частотах, которые используется в системах СТН.

В качестве диэлектрика между центральной жилой и оплеткой лучше всего подходит вспененный полиэтилен. Электрические характеристики вспененного полиэтилена лучше, чем у сплошного (твердого) полиэтилена, но он больше подвержен отрицательному воздействию влаги. Поэтому в условиях повышенной влажности предпочтительнее твердый полиэтилен.

В типовой системе СТН применяются кабели длиной не более 200м, желательно кабели RG59/U. Если внешний диаметр кабеля около 0,25 дюйм. (6,35 мм), то он поставляется в катушках по 500 и 1000 фут. Если нужен более короткий кабель, используйте кабель RG59/U с центральной жилой калибра 22, активное сопротивление которого составляет около 16 Ом на 300 м. Если нужен более длинный кабель, то подойдет кабель с центральной жилой калибра 20, сопротивление которого по постоянному току равно приблизительно 10 Ом на 300м. В любом случае можно легко приобрести кабель, в котором диэлектрическим материалом является полиуретан или полиэтилен. Если требуется кабель длиной от 200 до 1500 фут. (457 м), лучше всего подойдет кабель RG6/U. При тех же электрических характеристиках, что у кабеля RG59/U, его наружный диаметр также примерно равен диаметру кабеля RG59/U. Кабель RG6/U поставляется в катушках длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут.(609 м) и изготавливается из различных диэлектрических материалов и различных материалов для внешней оболочки. Но диаметр центральной жилы кабеля RG6/U больше (калибр 18), поэтому его сопротивление постоянному току меньше, оно равно приблизительно 8 Ом на 1000 фут. (304 м), а это означает, что сигнал по этому кабелю можно передавать на большие расстояния, чем по кабелю RG59/U.

Параметры кабеля RG11/U выше параметров кабеля RG6/U. В то же время электрические характеристики этого кабеля в основном такие же, как у других кабелей. Можно заказать кабель с центральной жилой калибра 14 или 18 с сопротивлением постоянному току 3-8 Ом на 300м). Поскольку этот кабель из всех трех кабелей имеет наибольший диаметр (0,405 дюйм. (10,3 мм)), то работы по его прокладке выполнять труднее. Кабель RG11/U обычно поставляется в катушках по длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут. (609 м). Для применения в особых условиях производители часто изготавливают модификации кабелей RG59/U, RG6/U и RG11/U.

В результате изменений правил пожарной безопасности и техники безопасности в различных странах все большую популярность в качестве материала для диэлектрика и оболочки приобретает фторопласт (тефлон, или Teflon®) и другие огнестойкие материалы. В отличие от ПВХ эти материалы не выделяют ядовитых веществ при пожаре и поэтому считаются более безопасными.

Для прокладки под землей рекомендуется специальный кабель, укладываемый непосредственно в грунт. Внешняя оболочка такого кабеля содержит влагостойкие и другие защитные материалы, поэтому его можно укладывать прямо в траншею. О способх подземной прогладки кабелей читайте здесь — Прокладка кабеля в земле.

При большом разнообразии видеокабелей для камер можно легко подобрать наиболее подходящий для конкретных условий. После того как определитесь с тем, какой должна быть ваша система, ознакомьтесь с техническими характеристиками оборудования и выполните соответствующие расчеты.

Длина кабеля

Сигнал ослабляется в каждом коаксиальном кабеле, и это ослабление тем больше, чем кабель длиннее и тоньше. Кроме того, ослабление сигнала увеличивается с ростом частоты передаваемого сигнала. Это одна из типичных проблем охранных систем телевизионного наблюдения (СТН) в целом.

Например, если монитор находится на расстоянии 300м от телекамеры, то сигнал ослабляется примерно на 37%. Самое плохое в этом то, что потери могут быть неочевидными. Поскольку вы не видите потерянную информацию, то можете даже не догадываться о том, что такая информация вообще была. Во многих видеоохранных системах СТН есть кабели длиной по несколько сотен и тысяч метров, и если потери сигналов в них велики, то изображения на мониторах будут серьезно искажены. Если расстояние между камерой и монитором превышает 200м, необходимо предпринять особые меры для обеспечения хорошей передачи видеосигнала.

Оконечная нагрузка кабеля

В системах телевизионного охранного наблюдения сигнал передается от камеры к монитору. Обычно передача идет по коаксиальному кабелю. Правильная оконечная нагрузка кабеля существенно влияет на качество изображения.

Используя номограмму (Рис. 1) можно определить значение напряжения подаваемого на видеокамеру (только для кабелей с медной жилой) задавшись сечением кабеля, максимальным током и удалением от источника питания. Полученное значение напряжения нужно сравнить с минимально допустимым значением напряжения, при котором камера может стабильно работать. Если значение меньше допустимого, то необходимо увеличить сечение используемых кабелей или использовать другую схему электропитания.

Номограмма рассчитана на источник электропитания видеокамер постоянным током с напряжением 12В.

Рис 1. Номограмма для определения напряжения на камере.

Волновое сопротивление (импеданс) коаксиального кабеля находится в диапазоне от 72 до 75 Ом, необходимо, чтобы сигнал передавался по однородной линии в любой точке системы для предотвращения искажения изображения и обеспечения надлежащей передачи сигнала от телекамеры к монитору. Импеданс кабеля должен быть постоянным и равным 75 Ом на всей его длине. Чтобы видеосигнал передавался от одного устройства к другому правильно и с малыми потерями, выходной импеданс телекамеры должен быть равен импедансу (волновому сопротивлению) кабеля, который, в свою очередь, должен быть равен входному импедансу монитора. Оконечная нагрузка любого видеокабеля должна быть равна 75 Ом. Обычно кабель подсоединен к монитору и одно это уже обеспечивает соблюдение указанного выше требования.

Обычно импеданс видеовхода монитора регулируется переключателем, расположенным около сквозных разъемов (вход/ выход), предназначенных для подсоединения дополнительного кабеля к другому устройству. Этот переключатель позволяет включить нагрузку величиной 75 Ом, если монитор является конечной точкой передачи сигнала, или включить высокоомную нагрузку (Hi-Z) и передать сигнал на второй монитор. Ознакомьтесь с техническими характеристиками оборудования и инструкциями к нему, чтобы определить требуемую оконечную нагрузку. Если оконечная нагрузка будет выбрана неверно, изображение обычно бывает слишком контрастным и слегка зернистым. Иногда изображение двоится, бывают и другие искажения.

Характеристика радиочастотных кабелей типа РК — RG

РК-75-1,5-11 М 1*0,24 0,24 1,5 ПЭ ОМ 0,08/60% ПЭ 2,4 8,4 0,32 50 BNC RG-58 пайка
РК-75-2-11 М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/92% ПЭ 3,3 16 0,22 300 BNC RG-58 пайка
РК-75-2-11а М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/75% ПЭ 3,3 14 0,23 200 BNC RG-58 пайка
РК-75-2-13 ЛМ 7*0,12 0,36 2,2 ПЭ ОМЛ 0,1/92% ПЭ 3,3 14,7 0,2 350 BNC RG-58 пайка
РК-75-3-32 М 1*0,6 0,6 2,7 ВПЭ ОМ 0,1/90% ПВХ 4,6 28,4 0,12 450 BNC RG-58, RG-59
РК-75-3,7-322а М 1*0,6 0,8 3,7 ВПЭ АЛ+ОМЛ 0,1/лм65% ПВХ 6 37,3 0,085 600 BNC RG-59
РК-75-4-11 М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,08 600 BNC RG-6 пайка
РК-75-4-11а М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/75% ПЭ 6,2±0,3 40 0,13 600 BNC RG-6 пайка
РК-75-4-12 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,09 600 BNC RG-6 пайка
РК-75-4-15 М 1*0,72 0,72/td> 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,08 600 BNC RG-6 пайка
РК-75-4-16 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,09 600 BNC RG-6 пайка
РК-75-4,9-322а М 1*1,1 1,1 4,9 ПЭ АЛ+ОМЛ 0,15/лм65% ПВХ 7,15 51 0,06 750 BNC RG-6
РК-75-9-12 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПВХ 12,2±0,8 189 0,06 Магистральный
РК-75-9-13 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПЭ 12,2±0,8 169 0,06 Магистральный
RG-59 М 1*0,81 0,81 3,66 ВПЭ АЛ+ОМЛ 0,15/67% ПВХ, ПЭ 6 31 0,085 600 BNC RG-59
RG-6U RG-6WE СОЖ М 1*1,02 1*1,02 1,02 1,02 4,4 ВПЭ 4,7 ВПЭ АЛ+ОМЛ АЛ+ОМЛ 0,15/32% 0,15/64% ПВХ, ПЭ ПВХ, ПЭ 7 6,9 36 45 0,09 0,06 650 BNC RG-6 обжим BNC RG-6
RG-11 СОЖ 1*1,63 1,63 7,11 ВПЭ АЛ+ОМЛ /60% ПВХ, ПЭ 10,3 166 0,05 Магистральный

Кабели представляют собой коаксиальный кабель с волновым сопротивлением 75 ом и диаметром 2,2 — 4,4 мм и несколько проводов питания сечением 0,35 — 0,75 мм2, объединённые общей оболочкой из поливинилхлоридного пластиката (для внутренней установки), светостабилизированного полиэтилена (для внешней установки) или термопластичной безгалогенной композиции (КВК-П-2 нг(С)-HF 2х0.50).

Для систем видеонаблюдения промышленностью выпускаются несколько типов комбинированных кабелей, специально предназначенных для передачи видеосигнала с одновременным подключением питания видеокамер или сигналов управления, а также микрофонных устройств (ККСЭВ, ККСЭВГ, ККСЭПГ).

Электрическое сопротивление постоянному току при 20°С, не более Ом/км:           — для сечения 0.35 мм2 — 55.5;           — для сечения 0.50 мм2 — 40.5;           — для сечения 0.75 мм2 — 25.5.

Вид климатического исполнения (по ГОСТУ 15150-69):           — УХЛ, категория размещения 1, 2 для кабелей с оболочкой из СПЭ;

          — УХЛ, категория размещения 2.1, 3, 4 для кабелей с оболочкой из ПВХ.

Окружающая среда для кабеля:           — с ПВХ оболочкой — от минус 40°С до плюс 70°С;

          — с СПЭ оболочкой — от минус 40°С до плюс 80°С.

Срок службы кабелей: — с ПВХ оболочкой — 12 лет,

— с П/Э оболочкой — 15 лет.

Более подробную информацию по выбору кабеля для СВН читайте здесь (Выбор видеокабеля для СВН), а также здесь (Коаксиальный кабель в системах видеонаблюдения).

Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины

Сечение, вес и сопротивление медных проводов

Без изоляции

С изоляцией эмалью

Диаметр, мм

Сечение, мм2

Сопротивл. 1 м

при 20°С, Ом (уд.сопр.)

Длина

на 1Ом, м

Диаметр, мм

Вес 100 м, г

0,05

0,002

9,29

0,108

0,06

1,8

0,06

0,0028

6,44

0,156

0,07

2,6

0,07

0,0039

4,73

0,212

0,08

3,5

0,08

0,005

3,63

0,276

0,09

4,6

0,09

0,0064

2,86

0,35

0,1

5,8

0,1

0,0079

2,23

0,448

0,115

7,3

0,11

0,0095

1,85

0,541

0,125

8,8

0,12

0,0113

1,55

0,445

0,135

10,4

0,13

0,0133

1,32

0,757

0,145

12,1

0,14

0,0154

1,14

0,877

0,155

14,0

0,15

0,0177

0,99

1,01

0,165

15,2

0,16

0,0201

0,873

1,145

1,175

18,3

0,17

0,0227

0,773

1,295

1,185

20,6

0,18

0,0255

0,688

1,455

1,195

23,1

0,19

0,0284

0,618

1,62

0,205

25,8

0,2

0,0314

0,558

1,795

0,215

28,5

0,21

0,0346

0,507

1,975

0,23

31,6

0,23

0,0416

0,423

2,36

0,25

37,8

0,25

0,0491

0,357

2,8

0,27

44,5

0,27

0,0573

0,306

3,27

0,295

52,1

0,29

0,0661

0,266

3,76

0,315

60,1

0,31

0,0755

0,233

4,3

0,34

68,8

0,33

0,0855

0,205

4,88

0,36

77,8

0,35

0,0962

0,182

5,5

0,38

87,4

0,38

0,1134

0,155

6,45

0,41

103

0,41

0,132

0,133

7,53

0,44

120

0,44

0,1521

0,115

8,7

0,475

138

0,47

0,1735

0,101

9,9

0,505

157

0,49

0,1885

0,0931

10,75

0,525

171

0,51

0,2043

0,0859

11,67

0,545

185

0,55

0,2376

0,0739

13,55

0,59

215

0,59

0,2734

0,0643

15,55

0,63

247

0,64

0,3217

0,0546

18,32

0,68

291

0,69

0,3739

0,0469

21,33

0,73

342

0,74

0,4301

0,0408

24,5

0,79

389

0,8

0,5027

0,0349

28,7

0,85

445

0,86

0,5809

0,0302

33,15

0,91

524

0,93

0,6793

0,0258

38,77

0,98

612

1,0

0,7854

0,0224

44,7

1,05

707

1,08

0,9161

0,0192

52,2

1,14

826

1,16

1,0568

0,0166

60,25

1,22

922

1,2

1,131

0,0155

64,5

1,26

1022

1,25

1,2272

0,0143

70

1,31

1105

1,35

1,4314

0,0122

81,9

1,41

1288

1,45

1,6513

0,0106

94,5

1,51

1486

1,56

1,9113

0,0092

108,8

1,62

1712

1,68

2,2167

0,0079

126,6

1,74

1992

1,81

2,573

0,0068

147,7

1,87

2310

1,95

2,9865

0,0059

169,5

2,01

2680

2,02

3,2047

0,0055

182

2,08

2875

2,1

3,4637

0,0051

186

2,16

3110

2,26

4,0115

0,0044

227,5

2,32

3603

2,44

4,6759

0,0038

263,2

2,5

4210

Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

В монтажной практике применяются круглые провода, для которых существует следующая формула расчёта сечения проводов по его диаметру:

S = πd2 / 4 = 0, 785 d2,

где S — сечение провода, мм2 ; π — отношение длины окружности к диаметру, принятое равным 3, 14;

d — диаметр провода, мм.

Номограмма расчета сопротивления

На крайних шкалах выбрать длину и сечение, соединить линейкой, на пересечении со средней шкалой прочитать сопротивление. ВНИМАНИЕ! Это сопротивление одного провода, кабель обычно

содержит два провода, общее сопротивление будет вдвое больше.

Многожильный провод представляет собой свитые вместе много одножильных проводков, поэтому, чтобы определить сечение многожильного провода нужно, сначала определить штангенциркулем или микрометром сечение одной проволочки многожильного провода и затем умножить на количество проводков в одном проводе.

Можно приблизительно определить сечение многожильного провода в кабеле без замера отдельных проводков, измерив общий диаметр всех свитых проволочек. Но так как проволочки круглые, то между ними имеются воздушные зазоры, и это надо при определении сечения провода учесть. При замере диаметра надо проследить, что бы многожильный провод ни сплющился. Для исключения площади зазоров, нужно полученный результат вычислений сечение провода по формуле умножить на коэффициент 0,7854.

По требованиям НПБ 88-2001* п.12.64. «Диаметр медных жил проводов и кабелей должен быть определён из расчёта допустимого напряжения, но не менее 0,5 мм.» Следовательно: S = π × d2 / 4 = 3,14 × 0,25 / 4 = 0,19625 мм2 Из расчёта видно, что поперечное сечение провода применяемого для шлейфов пожарной сигнализации должно быть не менее 0,2 мм2

Для шлейфов охранной сигнализации необходимо применять кабель (например, КСПВ) сечением не менее 0,4 мм каждого провода.

Подключение источников электропитания комплексной системы безопасности к сети энергоснабжения осуществляется трехпроводным кабелем. Сечение заземляющего провода должно быть не менее 1,5 мм2. Но, так как сечение проводников в кабеле сечением до 16 мм2 должно быть одинаковым, то подключение необходимо производить трёхпроводным кабелем сечением не менее 1,5мм2, согласно раздела 7 «Электрооборудование специальных установок» ПУЭ издание седьмое [Л3], Глава 7.1 «Электропроводки кабельных линий».

При длинных линиях питания учитывайте следующее:

Контакты реле, клеммные соединители (колодки) создают дополнительное сопротивление цепи питания, которое со временем будет увеличиваться. Предусмотрите соответствующий запас. Чем больше диаметр (сечение) провода, тем меньше его удельное сопротивление (падение напряжения питания соответственно тоже меньше). Провода в своей маркировке могут указывать как диаметр провода (КСПВ 4х0,5 — диаметр каждого из 4-х проводов 0,5мм) так и сечение (ШВВП 2х0,5 — сечение каждого из 2-х проводов 0,5 мм.квадратных). Будьте внимательны. Параллельное соединение двух проводов увеличивает вдвое их общее сечение, но не диаметр!

Есть такое понятие — плотность тока. Измеряется А/мм.квадратный (Ампер на квадратный милиметр сечения). Чем больше плотность тока, тем больше проводник будет греться, соответственно при плотной укладке проводов выбирайте из сечение, обеспечивающее плотность тока порядка 2 А/мм.квадратный (для проводника диаметром D=0.5мм его сечение составит 0,196 мм.квадратных, соответственно максимальный ток для него Imax=2*0,196=0,4А=400мА). Для одиночных проводов можете взять значение плотности тока побольше, но значения 5 А/мм.квадратный лучше не превышать.

Расчеты по формулам более точны, чем по таблицам, и необходимы в тех случаях, когда в таблицах отсутствуют нужные данные.

Закон Ома позволяет нам отображать характеристики электрических цепей через взаимосвязь четырех основных компонент:

  • A — ток (в Амперах)
  • V — напряжение (в Вольтах)
  • R — сопротивление (в Омах)
  • P — мощность (в Ваттах)

Взаимосвязь этих компонент между собой показана на так называемом «классическом колесе» (смотри рисунок ниже)

Эта простая и удобная схема помогает нам понять фундаментальные взаимосвязи в электрических цепях.

Сопротивление провода (в омах) вычисляется по формуле:

где ρ — удельное сопротивление (по таблице); I — длина провода, м; S — площадь поперечного сечения провода, мм2; d — диаметр провода, мм.

Длина провода из этих выражений определяется по формулам:

Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

В монтажной практике применяются преимущественно круглые провода. Для таких проводов существует следующая формула расчёта сечения проводов по его диаметру:

S = πd2 / 4 = 0, 785 d2

где S — сечение провода, мм2 ; π — отношение длины окружности к диаметру, принятое равным 3, 14;

d — диаметр провода, мм.

Необходимое сечение кабеля можно рассчитать по формуле:

S = 2 * p / (Uнач — Uкон) * I * L

где S – необходимое сечение кабеля; ρ – удельное сопротивление; Uнач – напряжение выдаваемое источником бесперебойного питания; Uкон – напряжение при котором работает оповещатель; I – ток нагрузки;

L – длинна линии оповещения.

Перевод сечения в диаметр производится по формуле:

D = Корень (S / 0,78)

Пример, исходные данные:

Удельное сопротивление меди (ρ) – 0,0175; Источник бесперебойного питания выдает напряжение равное (Uнач ) – 20,5В; Минимальное напряжение при котором работает оповещатель (Uкон) – 18В; Ток потребляемый оповещателем (I)– 0,6А;

Длинна линии оповещения (L) – 70м.

S = 2 * 0,0175 / (20,5 — 18) * 0,6 * 70 = 0,59мм2

D = Корень (0,59 / 0,78) = 0,87мм

Приведенные расчеты являются ориентировочными, не учитывают изменение сопротивления меди в зависимости от сечения кабеля (см. таблицу выше «Сечение, вес и сопротивление медных проводов»), расположение оповещателей в разных местах линии оповещения.

Берем, например, кабель КСПВ-0,5. Его диаметр 0,5 мм — сечение 0,196 мм.квадратных. Сопротивление одного метра каждого провода этого кабеля — 0,08 Ом, 100 метров — 8 Ом, если учесть, что питание приборов сигнализации осуществляется по двух проводной линии, то сопротивление 100 метров шлейфа питания составит 16 Ом. Поэтому при токе нагрузки, например, 200 мА (0,2А), напряжение питания на такой линии упадет на U=0.2*16=3,2 Вольт. При 12 Вольт в начале шлейфа в месте его окончания будет 12-3,2=8,8 Вольт.

Если смотреть корректно, то падение напряжения питания будет распределено по участкам цепи (ясно из следующего рисунка).

Желающие могут рассчитать его отдельно для участков R1, R2…Rn. (I1 = Iи1+Iи2…+Iиn, I2 = Iи2…+In и так далее).

Для автоматизации расчетов можно использовать специализированное программное обеспечение, приведенное в ссылках внизу публикации.

Например, программа “Wire” от “Авангардспецмонтаж”.

В программе предусмотрены следующие варианты расчетов:          - расчет при использовании кабелей одинакового сечения;          - расчет при известных сечениях для разных участков цепи;

         - расчет напряжений при известных сечениях на участках цепи.

Диаметр проволоки (без изоляции) измеряют микрометром или штангенциркулем. Для многопроволочного проводника сечение равно сечению одной проволоки, умноженному на их число:

S = 0, 785 d2 n

где n — число проволок, а остальные обозначения те же, что и в предыдущей формуле.

Сопротивление R2 при температуре t2 может быть определено по формуле:

R2 = R1[1+а*(t2 — t1)],

где а — температурный коэффициент электросопротивления (из таблицы); R1 — сопротивление при некоторой начальной температуре t1.

Обычно за t1 принимают 18°С, и во всех приведенных таблицах указана величина R1 для t1 = 18°С.

Допустимая сила тока при заданной норме плотности тока А/мм2 находится из формулы:

I = 0,785*d2

Необходимый диаметр провода по заданной силе тока определяют по формуле:

Если норма нагрузки D = 2а/мм2, то формула принимает вид:

Условие замены медного провода алюминиевым:

S(ал) ≈ 1,65*S(м)

S(ал), S(м) — сечение алюминиевых и медных проводов, мм2

Ток плавления для тонких проволочек с диаметром до 0,2 мм подсчитывается по формуле

где d — диаметр провода, мм; k — постоянный коэффициент, равный для меди 0,034, для никелина 0,07, для железа 0,127.

Диаметр провода отсюда будет:

d = k * Iпл + 0,005

Материал

Удельное сопротивление,

Ом x мм2

Удельный вес, г/см3

Температурный коэффициент электросопротивления

Температура плавления, °С

Максимальная рабочая температура; °С

м

(р)

Медь

0,0175

8,9

+0,004

1085

Алюминий

0,0281

2,7

+0,004

658

Железо

0,135

7,8

+0,005

1530

Сталь

0,176

7,95

+0,0052

Никелин

0,4

8,8

+0,00022

1100

200

Константан

0,49

8,9

—0,000005

1200

200

Манганин

0,43

8,4

+0,00002

910

110

Нихром

1,1

8,2

+0,00017

1550

1000

Подключение силовых электромагнитов в системах контроля доступа следует производить двухпроводным шнуром (например ШВВП 2*0,75) сечением рассчитанным по потребляемой мощности устройства. Расчёт проводить по формуле:

S = ρ x L х I / U

где: S – площадь сечения проводника, ( мм2 ) ρ – удельное сопротивление материала (меди 0,0178 Ом x мм2/м) L – длина проводника (м) I – ток протекающий по проводнику (А) U – падение напряжения на проводнике (В), обычно принимается равным 5% от напряжения приложенном к проводнику.
Практические советы и рекомендации по выбору силового кабеля

1. Возьмите за правило использовать ГОСТ — овский кабель, особенно если токи планируются свыше 10 ампер, а расстояния близкие к 100 метрам и больше.

2. Если нагрузка — нагревательный элемент (водонагреватель, электрокотел, духовой шкаф), то обязательно выбираем сечение кабеля на размер больше. Например по инструкции потребляемый ток = 20 ампер, для этого тока достаточно сечение кабеля в 2,5 мм2 (как открытая прокладка, так и закрытая), но тут есть нюансы, например кабель будет греться от самого прибора (у металлов хорошая теплопроводность ), значит у него повысится удельное сопротивление, значит увеличится еще больше падение напряжения на кабеле и возрастет рассеиваемая им мощность, что опять же ведет к повышению температуры. На самом деле есть допустимая температура нагрева, но эти процессы плохо сказываются на изоляции кабеля, которые ведут к его разрушению.

3. Индуктивная нагрузка, в частности электродвигателя, особенно скважные насосы — «не любят» малые сечения провода. Как правило у них большое расстояние от щита и поэтому стандартного сечения кабеля явно не достаточно, так для насоса мощностью в 1-1,5 кВт, при удаленности свыше 80 метров от щита питания, не то что 1,5 , а 2,5 мм2 сечения может быть мало. Так как важен именно пусковой ток. Здесь стоит обратить внимание на паспорт от производителя, там как правило это указано. Плюс в наших электросетях напряжение иногда меньше заявленного.

4. В сетях с низким напряжением, особо уделяйте внимание сечению кабеля. Так как нагрузка в 150 ватт, при 12 вольтах — это уже 12,5 ампер. А если нагрузка 300 Вт, то сечение надо выбирать, как минимум 2,5,а лучше 4 мм2, потому что есть еще стыки, да и мягкая проводка в местах соединения имеет свойство разрушаться.

5. Обращайте внимание на удаленность нагрузки от щита, как правило все эти таблицы составлены на расстояние до 100 метров. Если идет превышение расстояния, то используются поправочные коэффициенты.

6. Еще надо сказать — покупая кабель, не всегда верьте маркировке на проводах. Не всегда она правильная. Измеряйте микрометром. Сечение жилы провода кабеля (площадь круга) легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Иногда маркировка может быть указана, например, 1,5мм2, а фактически 1,1 мм2, сейчас не СССР и по ГОСТам многие не работают, делают кабеля по Техническим Условиям.

7. В продаже чисто медных проводов становится меньше, часто попадается суррагат, к которому таблицы выбора проводов и кабелей уже ни в коем случае нельзя применять.

Рекомендации по монтажу проводов питания 12-вольтовых приборов (датчики, извещатели, видеокамеры и прочее электронное оборудование).

1. Основные ограничения

1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия – 1В. 1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

2. Справочные данные

Сопротивление 100м медного провода (двойного): а) для провода сечением 0,3 5мм2 – 10,3 Ом, б) для провода сечением 9,0 мм2 – 0,4 Ом.

В промежутке между этими значениями – обратно пропорционально сечению провода.

3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания

Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:

Smin = 0,035 * ( i1 * L1 + i2 * L2 +… + ik * Lk ), где

L1, L2, … Lk, – значения длины участка провода питания от блока питания до каждого из изделий, м; i1, i2, ik – токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А; Smin — минимально-допустимое сечение провода, мм2.

Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид:

Smin = 0,035 * iср * ( L1 + L2 +… + Lk ).

Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным значениям в таблице в 2 раза. При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2. Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

Зависимость сечения провода (S) от длины удаленной линии питания и мощности нагрузки

Оценить величину напряжения на нагрузке с учётом падения напряжения на соединительной линии питания можно по следующей формуле в соответствии с эквивалентной схемой приведенной на рисунке.

UН = U0 – 2 * RL * IН

здесь: 2*RL = 3,6*10–2*L/S — сопротивление 2-х медных токопроводящих жил кабеля (соединительной линии) электропитания; U0 — выходное напряжение ИБП (В); IН — ток потребляемый нагрузкой (А); L — длина кабеля (соединительной линии) электропитания (м); S — сечение токопроводящей жилы кабеля электропитания (мм2).

Чем провода отличаются от кабелей

Провод — это одна неизолированная, одна или более изолированных жил, поверх которых, в зависимости от условий прокладки и эксплуатации, может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой. Провода могут быть голыми и изолированными.

Голые провода

Голыми называют провода, токопроводящие жилы которых не имеют никаких защитных или изолирующих покрытий. Голые провода (ПСО, ПС, А, АС и т. д.) в основном применяют для воздушных линий электропередач. Изолированными являются провода, токопроводящие жилы которых покрыты изоляцией из резины или пластмассы. Эти провода имеют поверх изоляции оплетку из хлопчатобумажной пряжи или оболочку из резины, пластмассы или металлической ленты. Изолированные провода подразделяют на защищенные и незащищенные.

Защищенные провода

Защищенными называют изолированные провода, имеющие поверх электрической изоляции оболочку, предназначенную для герметизации и защиты от внешних воздействий. К ним относятся провода АПРН, ПРВД, АПРФ и др. Незащищенным изолированным проводом называется провод, не имеющий поверх электрической изоляции оболочки. Это провода АПРТО, ПРД, АППР, АППВ, ППВ и др.

Электрические шнуры

Шнуром называется провод, состоящий из двух и более изолированных гибких или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллель но, покрытых в зависимости от условий эксплуатации неметаллической оболочкой или другими защитными покровами.

Кабели

Кабелем называется одна или несколько скрученных вместе изолированных жил, заключенных, как правило, в общую резиновую, пластмассовую, металлическую оболочку (НРГ, КГ, АВВГ н др.). Оболочка служит для защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждении.

Установочные провода

Установочные провода предназначены для монтажа силовых и осветительных сетей при неподвижной прокладке на открытом воздухе и внутри помещений. Изготавливают их с медными и алюминиевыми токоведущими жилами, одно- и многожильными, с резиновой и пластмассовой изоляцией, незащищенными и защищенными от легких механических повреждений. Токопроводящие жилы проводов имеют стандартные сечения, мм: 0,35; 0,5; 0,75; 1,0; 1,5; 2,5; 4,0; 6,0; 10,0; 16,0 и т. д.

Рекомендуемая цветовая кодировка жил в силовых кабелях
Количество жил Кабель с зелено-жёлтым проводом заземления
2 коричневый (черный)

синий

3 зелёный / жёлтый *               коричневый (черный)

синий

4 зелёный / жёлтый *синий

 фаза В  (S)**

 фаза С  (T)**5зелёный / жёлтый *

чёрный

коричневый 

чёрный     

синий    заземление

 фаза

 фаза

 фаза

 ноль6 

и болеезелёный / жёлтый *

остальные  заземление

 не нормируются

*       обязательное обозначение

**      международное обозначение фаз

О маркировке кабелей

Требования ПУЭ:     2.3.23. Каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д.    Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт — номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

Требования СНИП 3-05-06-85     3.22. Провода и кабели, прокладываемые в коробах и на лотках, должны иметь маркировку в начале и конце лотков и коробов, а также в местах подключения их к электрооборудованию, а кабели, кроме того, также на поворотах трассы и на ответвлениях.     3.103. Каждая кабельная линия должна быть промаркирована и иметь свой номер или наименование.     3.104. На открыто проложенных кабелях и на кабельных муфтах должны быть установлены бирки.На кабелях, проложенных в кабельных сооружениях, бирки должны быть установлены не реже чем через каждые 50 — 70 м, а также в местах изменения направления трассы, с обеих сторон проходов через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения.На скрыто проложенных кабелях в трубах или блоках бирки следует устанавливать на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.На скрыто проложенных кабелях в траншеях бирки устанавливают у конечных пунктов и у каждой соединительной муфты.     3.105. Бирки следует применять: в сухих помещениях — из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле — из пластмассы.Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, следует выполнять штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения допускается наносить несмываемой краской.

     3.106. Бирки должны быть закреплены на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1 — 2 мм, или пластмассовой лентой с кнопкой. Место крепления бирки на кабеле проволокой и сама проволока в сырых помещениях, вне зданий и в земле должны быть покрыты битумом для защиты от действия влаги.

Требования ПТЭ ЭП     2.4.5. Каждая КЛ должна иметь паспорт, включающий документацию, указанную в п.2.4.2. диспетчерский номер или наименование.     Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками; на бирках кабелей в начале и конце линии должны быть указаны марка, напряжение, сечение, номер или наименование линии; на бирках соединительных муфт — номер муфты, дата монтажа.

     Бирки должны быть стойкими к воздействию окружающей среды. Они должны быть расположены по длине линии через каждые 50 м на открыто проложенных кабелях, а также на поворотах трассы и в местах прохода кабелей через огнестойкие перегородки и перекрытия (с обеих сторон).

Из практики:На одной стороне проектное обозначение, откуда и куда идёт.На оборотной стороне марка кабеля, кол-во жил, сечение, длина.Круглая бирка — силовой кабель выше 1000ВКвадратная бирка — силовой кабель до 1000В

Треугольная бирка — контрольный кабель

Расшифровка маркировки кабеля и провода

1. Силовой кабель с ПВХ (виниловой) и резиновой изоляцией: ВВГ, ВВГнг, ВВГнг-LS, АВВГ, АВВГнг, АВВГнг-LS, ВБбШв, ВБбШнг, ВБбШнг-LS, АВБбШв, АВБбШнг, АВБбШнг-LS,

КГ — кабель гибкий А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию. В — (первая (при отсутствии А) буква) ПВХ изоляция В — (вторая (при отсутствии А) буква) ПВХ оболочка Г — отсутствие защитного покрова («голый») нг — не поддерживающий горения LS — Low Smoke – с пониженным дымо- и газовыделение Бб – бронированный покров из стальных лент

Шв — наружный покров из ПВХ шланга

2. Кабель с БПИ — кабель с изоляцией из пропитанной бумаги: АСБ, АСБл, АСБ2л, ААБл, СБ, СБл, СБГ

А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию. АБ — алюминиевая броня СБ — (первая или вторая (после А) буква) свинцовая броня л — лавсановая лента 2л — двойная лавсановая лента

Г — отсутствие защитного покрова («голый»)

3. Контрольный кабель: КВВГ, АКВВГ, КВВГнг, АКВВГнг, КВВГнг-LS, АКВВГнг-LS, КВВГэ, АКВВГэ, КВВГэнг-LS, АКВВГэнг-LS, КВБбШв, АКВБбШв, КВБбШнг, АКВБбШнг, КВБбШнг-LS, АКВБбШнг-LS

К — (первая или вторая (после А) буква) — кабель контрольный кроме КГ — кабель гибкий Э — экран

4. Телефонный кабель: ТПпП, ТпПэп, ТПпПз, ТПпэПз ТПпПБбШп, ТПпПзБбШп, ТПпэПзБбШп, ТСВ, ТСВнг

Т — телефонный кабель П — полиэтиленовая изоляция п — поясная изоляция — ленты полиамидные, полиэтиленовые, поливинилхлоридные или полиэтилентерефталатные Э — экран П — полиэтиленовая оболочка З — гидрофобный заполнитель Шп — наружный покров из полиэтиленового шланга

С — станционный кабель

5. Подвесные провода: А — Алюминиевый голый провод АС — Алюминиево-Стальной (чаще употребляется слово «сталеалюминиевый») голый провод

СИП — Самонесущий Изолированный Провод

6. Некоторые типы кабеля расшифровываются особым образом: КСПВ — Кабели для Систем Передачи в Виниловой оболочке КПСВВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, в Виниловой оболочке КПСВЭВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, с Экраном, в Виниловой оболочке ПНСВ — Провод Нагревательный, Стальная жила, Виниловая оболочка ПВ-1, ПВ-3 — Провод с Виниловой изоляцией. 1, 3 — класс гибкости жилы (наиболее применимые классы гибкости жилы для данного типа провода, однако, могут применяться и другие). ПВС — Провод в Виниловой оболочке Соединительный ШВВП — Шнур с Виниловой изоляцией, в Виниловой оболочке, Плоский ПУНП — Провод Универсальный Плоский

ПУГНП — Провод Универсальный Плоский Гибкий

7. Силовой кабель: NYM, NHMH, NYY, NYCY, NYRGY

N — согласно VDE Y — ПВХ H — безгалогеновый ПВХ M — монтажный кабель C — медный экран

RG — броня

8. Кабель итальянского производства имеет специфические обозначения согласно CEI UNEL 35011: FROR F — corda flessibile — гибкая жила R — polivinilclorudo — PVC — ПВХ изоляция O — anime riunite per cavo rotondo — круглый, не плоский кабель

R — polivinilclorudo — PVC — ПВХ оболочка

9. Контрольный кабель: YSLY, LiYCY

Y — ПВХ SL — кабель контрольный

Li — многожильный проводник по VDE

10. Кабель передачи данных «витая пара»: UTP, FTP, S-FTP, S-STP

U — unfoiled (нефольгированный, неэкранированный) F — foiled (фольгированный, экранированный) S — screened (экранированный медными проволоками) S-F — общий экран из фольги + общий плетеный экран S-S — экран каждой пары из фольги + общий плетеный экран

TP — twisted pair — витая пара

11. SAT — от англ. satellite — спутник — кабель для спутникового телевидения

12. Телефонный кабель и кабель для пожарной сигнализации: J-Y(St)Y, J-H(St)H

J- — инсталляционный, установочный кабель Y — ПВХ

(St) — экран из фольги

13. Безгалогеновый огнестойкий кабель: NHXHX FE 180, NHXCHX FE 180

N — согласно VDE HX — сшитая резина C — медный экран

FE 180 — кабель сохраняет свои свойства на протяжении определенного времени (в данном случае 180 минут) в открытом пламени, под напряжением

14. Провода монтажные: H05V-K, H07V-K, N07V-K

H — гармонизированный провод (одобрение HAR) N — соответствие национальному стандарту 05 — номинальное напряжение 300/500 В 07 — номинальное напряжение 450/750 В V — ПВХ изоляция

K — гибкая жила для стационарного монтажа

15. Кабели с изоляцией из сшитого полиэтилена:

N — согласно VDE Y — ПВХ 2Y — полиэтилен 2X — сшитый полиэтилен S — медный экран (F) — продольная герметизация (FL) — продольная и поперечная герметизация E — трехжильный кабель R — броня из круглых стальных проволок J — наличие желто-зеленой жилы

O — отсутствие желто-зеленой жилы

В последнее время все большее применение находят импортные провода, а также инструменты для работы с ними, маркированные по стандарту AWG (American Wire Gauge) – система обозначения толщины проводов и других объектов круглого сечения (прутков, арматуры, трубок, кембриков и т.д.) принятый в США. Чем меньше номер AWG, тем толще диаметр провода. Калибр провода в стандарте AWG отражает его средний диаметр. Подобное „перевёрнутое“ обозначение диаметра имет исторические корни, когда проволоку для проводов изготавливали методом волочения. Номер AWG обозначал количество проходов через уменьшающиеся отверстия в волоке, прежде чем получался нужный диаметр проволоки. Например, толстая (более 8 мм) проволока размера AWG 0 только после 24 протягиваний через станок превращалась в AWG 24, диаметром около 0,5 мм.

Калибры разнятся еще и в зависимости от типа кабеля: для одножильных кабелей AWG переводится в диаметр по одной формуле, для многожильных — по другой. Для справки приведем таблицу перевода наиболее популярных калибров одножильных и многожильных кабелей в диаметр и площадь поперечного сечения проводников.

Одножильный кабель

AWG Диаметр, мм Площадь поперечного сечения, мм2
18 1.020 0.817
19 0.912 0.653
20 0.813 0.519
21 0.724 0.412
22 0.643 0.325
23 0.574 0.259
24 0.511 0.205
25 0.455 0.163
26 0.404 0.128

Многожильный кабель

AWG Количество жил Диаметр, мм Площадь поперечного сечения, мм2
22 7 0.762 0.352
22 19 0.787 0.380
22 26 0.762 0.327
24 7 0.610 0.226
24 10 0.584 0.200
24 19 0.610 0.239
24 42 0.584 0.201
26 7 0.483 0.140
26 10 0.553 0.127
26 19 0.508 0.153

os-info.ru

Электро провода и нагрузка на них

Содержание

  • 1 Общая информация для потребителя
  • 2 Определение и расчет жил по формуле
  • 3 Допустимая плотность электротока
  • 4 Пример подсчета участка проводки и нагрузки
  • 5 Быстрый подбор: полезные стандарты и соотношение
  • 6 Рекомендации по устройству
        • 6.0.0.1 Допустимый длительный ток для проводов и шнуров с резиновой и ПХВ изоляцией с медными жилами
        • 6.0.0.2 Допустимый длительный ток для проводов с резиновой и ПХВ изоляцией с алюминиевыми жилами
        • 6.0.0.3 Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
        • 6.0.0.4 Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
        • 6.0.0.5 Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
        • 6.0.0.6 Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
        • 6.0.0.7 Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:
        • 6.0.0.8 Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В
        • 6.0.0.9 Таблица выбора сечения кабеля для оповещателей СОУЭ
        • 6.0.0.10 Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей
        • 6.0.0.11 Выбор сечения кабеля для речевого оповещения
        • 6.0.0.12 Применение огнестойких кабелей в системах АПЗ
        • 6.0.0.13 Выбор кабелей для систем видеонаблюдения
        • 6.0.0.14 Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины
        • 6.0.0.15 Сечение, вес и сопротивление медных проводов
        • 6.0.0.16 Номограмма расчета сопротивления
        • 6.0.0.17 Рекомендации по монтажу проводов питания 12-вольтовых приборов (датчики, извещатели, видеокамеры и прочее электронное оборудование).
        • 6.0.0.18 Зависимость сечения провода (S) от длины удаленной линии питания и мощности нагрузки
        • 6.0.0.19 О маркировке кабелей
  • 7 Расчет мощности
  • 8 Расчет токовой нагрузки
  • 9 Коэффициенты
  • 10 Заключение по теме

При устройстве электропроводки необходимо заранее определить мощности потребителей. Это поможет в оптимальном выборе кабелей. Такой выбор позволит долго и безопасно эксплуатировать проводку без ремонта.

Кабельная и проводниковая продукция весьма разнообразна по своим свойствам и целевому назначению, а также имеет большой разброс в ценах. Статья рассказывает о важнейшем параметре проводки – сечении провода или кабеля по току и мощности, и как определить диаметр – рассчитать по формуле или выбрать с помощью таблицы.

Общая информация для потребителя

Токонесущая часть кабеля выполняется из металла. Часть плоскости, проходящей под прямым углом к проводу, ограниченная металлом, называется сечением провода. В качестве единицы измерения используют квадратные миллиметры.

Сечение определяет допустимые токи, проходящие в проводе и кабеле. Этот ток, по закону Джоуля-Ленца, приводит к выделению тепла (пропорционально сопротивлению и квадрату тока), которое и ограничивает ток.

Условно можно выделить три области температур:

  • изоляция остается целой;
  • изоляция обгорает, но металл остается целым;
  • металл плавится от высокой температуры.

Из них только первая является допустимой температурой эксплуатации. Кроме того, с уменьшением сечения возрастает его электрическое сопротивление, что приводит к увеличению падения напряжения в проводах.

Однако, увеличение сечения приводит к увеличению массы и особенно стоимости или кабеля.

Из материалов для промышленного изготовления кабельной продукции используют чистую медь или алюминий. Эти металлы имеют различные физические свойства, в частности, удельное сопротивление, поэтому и сечения, выбираемые под заданный ток, могут оказаться различными.

Узнайте из этого видео, как правильно подобрать сечение провода или кабеля по мощности для домашней проводки:

Определение и расчет жил по формуле

Теперь разберемся, как правильно рассчитать сечение провода по мощности зная формулу. Здесь мы решим задачу определения сечения. Именно сечение является стандартным параметром, по причине того, что номенклатура включает как одножильный вариант, так и многожильные. Преимущество многожильных кабелей в их большей гибкости и стойкости к изломам при монтаже. Как правило, многожильные изготавливают из меди.

Проще всего определяется сечение круглого одножильного провода, d – диаметр, мм; S – площадь в квадратных миллиметрах:

Многожильные рассчитываются более общей формулой: n – число жил, d – диаметр жилы, S – площадь:

Диаметр жилы можно определить, сняв изоляцию и замерив диаметр по голому металлу штангенциркулем или микрометром.

Допустимая плотность электротока

Плотность тока определяется очень просто, это число ампер на сечение. Существует два варианта проводки: открытая и закрытая. Открытая допускает большую плотность тока, за счет лучшей теплоотдачи в окружающую среду. Закрытая требует поправки в меньшую сторону, чтобы баланс тепла не привел к перегреву в лотке, кабельном канале или шахте, что может вызвать короткое замыкание или даже пожар.

Точные тепловые расчеты очень сложны, на практике исходят из допустимой температуры эксплуатации наиболее критичного элемента в конструкции, по которой и выбирают плотность тока.

Таким образом, допустимая плотность тока, это величина, при которой нагрев изоляции всех проводов в пучке (кабельном канале) остается безопасным, с учетом максимальной температуры окружающей среды.

Таблица сечения медного и алюминиевого провода или кабеля по току:

В таблице 1 приводится допустимая плотность токов для температур, не выше комнатной. Большинство современных проводов имеют ПВХ или полиэтиленовую изоляцию, допускающую нагрев при эксплуатации не более 70-90°C. Для «горячих» помещений плотность токов необходимо снижать с коэффициентом 0.9 на каждые 10°C до температур предельной эксплуатации проводов или кабеля.

Теперь о том, что считать открытой и что закрытой проводкой. Открытой является проводка, если она выполнена хомутами (шинкой) по стенам, потолку, вдоль несущего троса или по воздуху. Закрытая проложена в кабельных лотках, каналах, замурована в стены под штукатурку, выполнена в трубах, оболочке или проложена в грунте. Также следует считать проводку закрытой, если она находится в распределительных коробках или щитках. Закрытая охлаждается хуже.

Например, пусть в помещении сушилки градусник показывает 50°С. До какого значения следует уменьшить плотность тока медного кабеля, проложенного в этом помещении по потолку, если изоляция кабеля выдерживает нагрев до 90°C? Разница составляет 50-20 = 30 градусов, значит, нужно трижды использовать коэффициент. Ответ:

Пример подсчета участка проводки и нагрузки

Пусть подвесной потолок освещается шестью светильниками мощностью по 80 Вт каждый и они уже соединены между собой. Нам требуется подвести к ним питание, используя алюминиевый кабель. Будем считать проводку закрытой, помещение сухим, а температуру комнатной. Теперь узнаем, как посчитать силу тока сечения провода по мощности медного и алюминиевого кабелей, для этого используем уравнение, определяющее мощность (сетевое напряжение по новым стандартам считаем равным 230 В):

Используя соответствующую плотность тока для алюминия из таблицы 1, найдем сечение, необходимое для работы линии без перегрева:

Если нам нужно найти диаметр провода, используем формулу:

Подходящим будет кабель АППВ2х1.5 (сечение 1.5 мм.кв). Это, пожалуй, самый тонкий кабель, какой можно найти на рынке (и один из наиболее дешевых). В приведенном случае он обеспечивает двухкратный запас по мощности, т. е. на данной линии может быть установлен потребитель с допустимой мощностью нагрузки до 500 Вт, например, вентилятор, сушилка или дополнительные светильники.

Розетки на эту линию устанавливать недопустимо, так как в них может быть включен (а, скорее всего, и будет) мощный потребитель и это приведет к перегрузке участка линии.

Быстрый подбор: полезные стандарты и соотношение

Для экономии времени, расчеты обычно сводят в таблицы, тем более, что номенклатура кабельных изделий довольно ограничена. В следующей таблице приводится расчет сечения медного и алюминиевого проводов по потребляемой мощности и силе тока в зависимости от предназначения — для открытой и закрытой проводки. Диаметр получается как функция от мощности нагрузки, металла и типа проводки. Напряжение сети считается равным 230 В.

Таблица дает возможность быстро выбрать сечение или диаметр, если известна мощность нагрузки. Найденное значение округляется в большую сторону до ближайшего значения из номенклатурного ряда.

В следующей таблице сведены данные допустимых токов по сечениям и мощности материалов кабелей и проводов для расчета и быстрого выбора наиболее подходящих:

Рекомендации по устройству

Устройство проводки, кроме всего прочего, требует навыков проектирования, что есть не у каждого, кто хочет ее сделать. Недостаточно иметь только хорошие навыки в электромонтаже. Некоторые путают проектирование с оформлением документации по каким-то правилам. Это совершенно разные вещи. Хороший проект может быть изложен на листках из тетрадки.

Прежде всего, нарисуйте план ваших помещений и отметьте будущие розетки и светильники. Узнайте мощности всех ваших потребителей: утюгов, ламп, нагревательных приборов и т. п. Затем впишите мощности нагрузок, наиболее часто потребляемых в разных помещениях. Это позволит вам выбрать наиболее оптимальные варианты выбора кабелей.

Вы удивитесь, сколько тут возможностей и какой резерв для экономии денег. Выбрав провода, подсчитайте длину каждой линии, которую вы ведете. Сложите все вместе, и тогда вы приобретете ровно то, что нужно, и столько, сколько нужно.

Каждая линия должна быть защищена своим автоматом (автоматическим выключателем), рассчитанным на ток, соответствующий допустимой мощности линии (сумма мощностей потребителей). Подпишите автоматы, расположенные в щитке, например: «кухня», «гостиная» и т. д.

Целесообразно иметь отдельную линию на все освещение, тогда вы сможете спокойно чинить розетку в вечернее время, не пользуясь спичками. Именно розетки чаще всего и бывают перегруженными. Обеспечивайте розетки достаточной мощностью – вы не знаете заранее, что вам придется туда включать.

В сырых помещениях используйте кабели только с двойной изоляцией! Используйте современные розетки («евро») и кабели с заземляющими проводниками и правильно подключайте заземление. Одножильные провода, особенно медные, изгибайте плавно, оставляя радиус в несколько сантиметров. Это предотвратит их излом. В кабельных лотках и каналах провода должны лежать прямо, но свободно, ни в коем случае нельзя натягивать их, как струну.

В розетках и выключателях должен быть запас в несколько лишних сантиметров. При прокладке нужно убедиться, что нигде нет острых углов, которые могут надрезать изоляцию. Затягивать клеммы при подключении необходимо плотно, а для многожильных проводов эту процедуру следует сделать повторно, у них есть особенность усадки жил, в результате чего соединение может ослабнуть.

Медные провода и алюминиевые «не дружат» между собой по электрохимическим причинам, непосредственно соединять их нельзя. Для этого можно использовать специальные клеммники или оцинкованные шайбы. Места соединений всегда должны быть сухими.

Фазные проводники должны быть белого (или коричневого) цвета, а нейтрали – всегда синего . Заземление имеет желто-зеленый цвет. Это общепринятые правила расцветки и продажные кабели, как правило, имеют внутреннюю изоляцию именно таких цветов. Соблюдение расцветки повышает безопасность эксплуатации и ремонта.

Предлагаем вашему вниманию интересное и познавательное видео, как правильно рассчитать сечение кабеля по мощности и длине:

Выбор проводов по сечению является главным элементом проекта электроснабжения любого масштаба, от комнаты, до больших сетей. От этого будет зависеть ток, который можно отбирать в нагрузку и мощность. Правильный выбор проводов также обеспечивает электро- и пожарную безопасность, и обеспечивает экономичный бюджет вашего проекта.

Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки. Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока.

В общем виде порядок выбора сечения силовой линии питания можно определить следующим образом:

При монтаже капитальных строений для прокладки внутренних силовых сетей допускается использование только кабелей с медными жилами (ПУЭ п. 7.1.34).

Питание электроприемников от сети 380/220 В должно выполняться с системой заземления TN-S или TN-C-S (ПУЭ п. 7.1.13), поэтому все кабели питающие однофазные потребители должны содержать три проводника:           — фазный проводник           — нулевой рабочий проводник

          — защитный (заземляющий проводник)

Кабели, питающие трехфазные потребители должны содержать пять проводников:           — фазные проводники (три штуки)           — нулевой рабочий проводник

          — защитный (заземляющий проводник)

Исключением являются кабели, питающие трехфазные потребители без вывода для нулевого рабочего проводника (например асинхронный двигатель с к. з. ротором). В таких кабелях нулевой рабочий проводник может отсутствовать.

Из всего многообразия кабельной продукции, представленной на современном рынке, жестким требованиям электро и пожаробезопасности соответствуют только два типа кабелей: ВВГ и NYM.

Внутренние силовые сети должны быть выполнены кабелем не распространяющим горение, то есть с индексом «НГ» (СП–110–2003 п. 14.5). Кроме того, электропроводки в полостях над подвесными потолками и в пустотах перегородок, должны быть с пониженным дымовыделением, на что указывает индекс «LS».

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы. То есть для расчета мощности групповой линии освещения или групповой розеточной линии необходимо просто сложить все мощности потребителей данной группы.

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220.

1. Для определения сечения вводного силового кабеля необходимо подсчитать суммарную мощность всех планируемых к использованию энергопотребителей и умножить ее на коэффициент 1,5. Еще лучше – на 2, чтобы создать запас прочности.

2. Как известно, проходящий через проводник электрический ток (а он тем больше, чем больше мощность питаемого электроприбора) вызывает нагрев этого проводника. Допустимый для наиболее распространенных изолированных проводов и кабелей нагрев составляет 55-75°С. Исходя из этого и выбирается сечение жил вводного кабеля. Если подсчитанная общая мощность будущей нагрузки не превышает 10 — 15 кВт, достаточно использовать медный кабель с сечением жилы 6 мм2, алюминиевый – 10 мм2. При увеличении мощности нагрузки вдвое сечение увеличивается втрое.

3. Приведенные цифры справедливы для однофазной открытой прокладки силового кабеля. Если он прокладывается скрыто, сечение увеличивается в полтора раза. При трехфазной проводке мощность потребителей может быть увеличена вдвое, если прокладка открытая, и в 1,5 раза при скрытой прокладке.

4. Для электропроводки розеточных и осветительных групп традиционно используют провода, имеющие сечение 2,5 мм2 (розетки) и 1,5 мм2 (освещение). Поскольку многие кухонные приборы, электроинструменты и отопительные приборы являются очень мощными потребителями электроэнергии, их положено запитывать отдельными линиями. Здесь руководствуются следующими цифрами: провод, обладающий сечением 1,5 мм2, способен «потянуть» нагрузку в 3 кВт, сечением 2,5 мм2 – 4,5 кВт, для 4 мм2 допустимая мощность нагрузки уже 6 кВт, а для 6 мм2 – 8 кВт.

Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:

— для медного провода 10 ампер на миллиметр квадратный,

— для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.

Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм2 из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

Допустимый длительный ток для проводов и шнуров с резиновой и ПХВ изоляцией с медными жилами

Сечение жилы

Нормальное применение

Предельно допустимые значения (темп-ра жил +65 °С, воздуха +25 °С )

       

мм2

В кабельных коробах

Открыто

Открыто

В кабельном коробе двух одножильных

В кабельном коробе четырех одножильных

В кабельном коробе одного трехжильного

 

А

А

А

А

А

А

Допустимый длительный ток для проводов с резиновой и ПХВ изоляцией с алюминиевыми жилами
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,

найритовой или резиновой оболочке, бронированных и небронированных

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

— Медь, U = 220 B, одна фаза, двухжильный кабель

Р, кВт
I, A
Сечение токопроводящей жилы, мм2
Макс. допустимая длина кабеля при указанном сечении, м*

— Медь, U = 380 B, три фазы, трехжильный кабель

Р, кВт
I, A
Сечение токопроводящей жилы, мм2
Макс. допустимая длина кабеля при указанном сечении, м*

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках

 

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

   

непосредственно по основаниям, на роликах, клицах и тросах

на лотках, в коробах (кроме глухих):

   

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

   

однопроволочных

многопроволочных (гибких)

на изоляторах

Незащищенные изолированные провода в наружных электропроводках:

   

по стенам, конструкциям или опорам на изоляторах;

вводы от воздушной линии

   

под навесами на роликах

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

   

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

   

однопроволочных

многопроволочных (гибких)

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В

Щелкните мышкой по изображению чтобы увеличить.

Таблица выбора сечения кабеля для оповещателей СОУЭ

Скачать таблицу с формулами расчета — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей
Выбор сечения кабеля для речевого оповещения
Применение огнестойких кабелей в системах АПЗ

Благодаря своим частотным характеристикам огнестойкте кабели марок КПСЭнг-FRLS КПСЭнг-FRHF КПСЭСнг-FRLS КПСЭСнг-FRHF могут быть использованы в качестве:

  • шлейфов для адресно-аналоговых систем пожарной сигнализации;
  • кабелей приёма-передачи данных между приборами контрольными пожарными пожарной сигнализации и приборами управления системы противопожарной защиты;
  • интерфейсного кабеля систем оповещения и управления эвакуацией (СОУЭ);
  • кабеля управления систем автоматического пожаротушения;
  • кабеля управления систем противодымной защиты;
  • интерфейсного кабеля других систем противопожарной защиты.

В качестве справочной информации ниже приведены значения волновых сопротивлений и частотные характеристики различных марко-размеров огнестойких кабелей.

1 КПСЭнг – FRLS 1х2х0.5 КПСЭнг – FRHF 1х2х0.5 120±20 100±15
2 КПСЭнг – FRLS 1х2х0.75 КПСЭнг – FRHF 1х2х0.75 110±15 90±10
3 КПСЭнг – FRLS 1х2х1.0 КПСЭнг – FRHF 1х2х1.0 100±15 80±10
4 КПСЭнг – FRLS 1х2х1.5 КПСЭнг – FRHF 1х2х1.5 90±10 70±10
5 КПСЭнг – FRLS 1х2х2.5 КПСЭнг – FRHF 1х2х2.5 80±10 60±5
КПСЭнг – FRLS 1х2х0.5 КПСЭнг – FRHF 1х2х0.5 0,12 0,39 2,3 5,8 21,4
КПСЭнг – FRLS 1х2х0.75 КПСЭнг – FRHF 1х2х0.75 0,09 0,28 2,2 5,1 18,9
КПСЭнг – FRLS 1х2х1.0 КПСЭнг – FRHF 1х2х1.0 0,08 0,24 2,1 4,9 18,0
КПСЭнг – FRLS 1х2х1.5 КПСЭнг – FRHF 1х2х1.5 0,07 0,22 2,0 4,4 17,5
КПСЭнг – FRLS 1х2х2.5 КПСЭнг – FRHF 1х2х2.5 0,05 0,20 2,0 4,4 17,5

Общая сравнительная характеристика кабелей для локальной сети

Тип кабеля (10 Мбит/с = около

1 Мб в сек)

Скорость передачи данных (мегабит в секунду) Макс официальная длина сегмента, м Макс неофициальная длина сегмента, м* Возможность восстановления при повреждении / наращивание длины Подверженность помехам Стоимость
Витая пара
Неэкранированная Витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Средняя Низкая
Экранированная витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Низкая Средняя
Кабель полевой П-296 100/10 Мбит/с —— 300(500)/>500 м Хорошая Низкая Высокая
Четырехжильный телефонный кабель 50/10 Мбит/с —— Не более 30 м Хорошая Высокая Очень низкая
Коаксиальный кабель
Тонкий коаксиальный кабель 10 Мбит/с 185 м 250(300) м Плохая Требуется пайка Высокая Низкая
Толстый коаксиальный кабель 10 Мбит/с 500 м 600(700) Плохая Требуется пайка Высокая Средняя
Оптоволокно
Одномодовое оптоволокно 100-1000 Мбит До 100 км —- Требуется спец оборудование Отсутствует  
Многомодовое оптоволокно 1-2 Гбит До 550 м —- Требуется спец оборудование Отсутствует  

*- Передача данных на расстояния, превышающие стандарты, возможна при использовании качественных комплектующих.

Выбор кабелей для систем видеонаблюдения

Чаще всего видеосигналы передаются между устройствами по коаксиальному кабелю. Коаксиальный кабель – это не только самый распространенный, но и самый дешевый, самый надежный, самый удобный и самый простой способ передачи электронных изображений в системах телевизионного наблюдения (СТН).

Коаксиальный кабель выпускается многими изготовителями с самыми разнообразными размерами, формами, цветами, характеристиками и параметрами. Чаще всего рекомендуют использовать кабели типа RG59/U, однако фактически это семейство включает кабели с самыми разнообразными электрическими характеристиками. В системах телевизионного наблюдения и в других областях, где применяются телекамеры и видеоустройства, также широко используются похожие на RG59/U кабели RG6/U и RG11/U.

Хотя все эти группы кабелей во многом похожи друг на друга, у каждого кабеля есть свои собственные физические и электрические характеристики, которые необходимо принимать во внимание.

Все три упомянутые группы кабелей относятся к одному и тому же общему семейству коаксиальных кабелей. Буквы RG означают «radio guide» (радиочастотный волновод), а числа обозначают различные виды кабеля. Хотя у каждого кабеля есть свой номер, свои характеристики и размеры, в принципе все эти кабели устроены и работают одинаково.

Устройство коаксиального кабеля

Наиболее распространенные кабели RG59/U, RG6/U и RG11/U имеют круглое сечение. В любом кабеле есть центральная жила, покрытая диэлектрическим изоляционным материалом, который, в свою очередь, покрыт токопроводящей оплеткой или экраном с целью защиты от электромагнитных помех (ЭМП). Наружное защитное покрытие поверх оплетки (экрана) называется оболочкой кабеля.

Два проводника коаксиального кабеля разделены непроводящим диэлектрическим материалом. Внешний проводник (оплетка) экранирует центральный проводник (жилу) от внешних электромагнитных помех. Защитное покрытие поверх оплетки предохраняет проводники от физических повреждений.

Центральная жила

Центральная жила – главное средство передачи видеосигнала. Диаметр центральной жилы обычно находится в пределах от 14 до 22 калибра по американскому сортименту проводов (AWG). Центральная жила либо медная целиком, либо стальная с медным покрытием (сталь, плакированная медью), в последнем случае жилу также называют неизолированным омедненным проводом (BCW, Bare Copper Weld). Центральная жила кабеля для систем СТН должна быть медной. Кабели, центральная жила которых не полностью медная, а только покрыта медью, имеют намного большее сопротивление контура на частотах видеосигнала, поэтому их нельзяприменять в системах СТН. Чтобы определить тип кабеля, посмотрите на сечение его центральной жилы. Если жила является стальной с медным покрытием, то ее центральная часть будет серебристого цвета, а не медного. От диаметра центральной жилы зависит активное сопротивление кабеля, то есть его сопротивление постоянному току. Чем больше диаметр центральной жилы, тем меньше ее сопротивление. Кабель с центральной жилой большого диаметра (а значит с меньшим сопротивлением) может передавать видеосигнал на большее расстояние с меньшими искажениями, но зато более дорог и менее гибок.

Если условия эксплуатации кабеля таковы, что он может часто изгибаться в вертикальном или горизонтальном направлении, выберите кабель с многожильным центральным проводником, который сделан из большого количества проводов малого диаметра. Многожильный кабель более гибкий по сравнению с одножильным и более стойкий с точки зрения усталости метала при изгибе.

Диэлектрический изоляционный материал

Центральная жила равномерно окружена диэлектрическим изоляционным материалом, обычно это полиуретан или полиэтилен. Толщина слоя этого диэлектрического изолятора одинакова по всей длине коаксиального кабеля, благодаря чему эксплуатационные характеристики кабеля по всей его длине одинаковы. Диэлектрики из пористого или вспененного полиуретана меньше ослабляют видеосигнал, чем диэлектрики из твердого полиэтилена. При расчете потерь по длине для любого кабеля желательны меньшие потери по длине. Кроме того, вспененный диэлектрик придает кабелю большую гибкость, которая облегчает работу монтажников. Но хотя электрические характеристики кабеля с вспененным диэлектрическим материалом более высоки, такой материал может поглощать влагу, которая ухудшает эти характеристики.

Твердый полиэтилен жестче и лучше сохраняет свою форму, чем вспененный полимер, более устойчив к защемлению и сдавливанию, но прокладывать такой жесткий кабель несколько труднее. Кроме того, потери сигнала на единицу длины у него больше, чем у кабеля с вспененным диэлектриком, и это нужно учитывать, если длина кабеля должна быть большой.

Оплетка, или экран

Снаружи диэлектрический материал покрыт медной оплеткой (экраном), которая является вторым (обычно заземленным) проводником сигналов между телекамерой и монитором. Оплетка служит экраном от нежелательных внешних сигналов, или наводок, которые обычно называют электромагнитными помехами (ЭМП) и которые могут неблагоприятно влиять на видеосигнал.

Качество экранирования от электромагнитных помех зависит от содержания меди в оплетке. Коаксиальные кабели рыночного качества содержат неплотную медную оплетку с экранирующим эффектом приблизительно 80%. Такие кабели пригодны для обычных случаев применения, когда электромагнитные помехи малы. Эти кабели хороши в тех случаях, когда они проложены в металлическом кабелепроводе или металлической трубе, которые служат дополнительным экраном.

Если условия эксплуатации не очень хорошо известны и кабель прокладывается не в металлической трубе, которая может служить дополнительной защитой от ЭМП, то лучше выбрать кабель с максимальной защитой от помех или кабель с плотной оплеткой, содержащей больше меди по сравнению с коаксиальными кабелями рыночного качества. Повышение содержания меди обеспечивает лучшее экранирование за счет большего содержания экранирующего материала в более плотной оплетке. Для систем СТН требуются медные проводники.

Кабели, в которых экраном служит алюминиевая фольга или оберточный фольговый материал, не пригодны для систем телевизионного наблюдения (СТН). Такие кабели обычно применяются для передачи радиочастотных сигналов в передающих системах и в системах распределения сигнала с коллективной антенны.

Кабели, в которых экран сделан из алюминия или фольги, могут искажать видеосигналы настолько сильно, что качество изображения упадет ниже уровня, требуемого в системах наблюдения, особенно в том случае, когда длина кабеля велика, поэтому такие кабели не рекомендуется применять в системах СТН.

Внешняя оболочка

Последним компонентом коаксиального кабеля является внешняя оболочка. Для ее изготовления используются различные материалы, но чаще всего поливинилхлорид (ПВХ). Поставляются кабели с оболочкой различных цветов (черные, белые, желтовато-коричневые, серые) – как для наружной установки, так и для установки в помещениях.

Выбор кабеля определяется также следующими двумя факторами: расположение кабеля (внутри помещения или снаружи) и его максимальная длина.

Коаксиальный видеокабель предназначен для передачи сигнала с минимальной потерей от источника с волновым сопротивлением 75 Ом к нагрузке с волновым сопротивлением 75 Ом. Если используется кабель с другим волновым сопротивлением (не 75 Ом), то возникают дополнительные потери и отражения сигналов. Характеристики кабеля определяются рядом факторов (материал центральной жилы, диэлектрический материал, конструкция оплетки и др.), которые следует тщательно учитывать при выборе кабеля для конкретного применения. Кроме того, характеристики передачи сигнала по кабелю зависят от физических условий вокруг кабеля и от метода прокладки кабеля.

Используйте только кабель высокого качества, выбирайте его, внимательно учитывая среду, в которой он будет работать (в помещении или снаружи). Для передачи видеосигналов лучше всего подходит кабель с медной однопроводной жилой, за исключением случая, когда требуется повышенная гибкость кабеля. Если условия эксплуатация таковы, что кабель часто изгибается (например, если кабель подсоединен к сканирующему устройству или камере, которая поворачивается по горизонтали и по вертикали), требуется специальный кабель. Центральный проводник в таком кабеле многожильный (скручен из тонких жил). Проводники кабеля должны быть сделаны из чистой меди. Не применяйте кабель, проводники которого сделаны из стали, плакированной медью, потому что такой кабель плохо передает сигнал на тех частотах, которые используется в системах СТН.

В качестве диэлектрика между центральной жилой и оплеткой лучше всего подходит вспененный полиэтилен. Электрические характеристики вспененного полиэтилена лучше, чем у сплошного (твердого) полиэтилена, но он больше подвержен отрицательному воздействию влаги. Поэтому в условиях повышенной влажности предпочтительнее твердый полиэтилен.

В типовой системе СТН применяются кабели длиной не более 200м, желательно кабели RG59/U. Если внешний диаметр кабеля около 0,25 дюйм. (6,35 мм), то он поставляется в катушках по 500 и 1000 фут. Если нужен более короткий кабель, используйте кабель RG59/U с центральной жилой калибра 22, активное сопротивление которого составляет около 16 Ом на 300 м. Если нужен более длинный кабель, то подойдет кабель с центральной жилой калибра 20, сопротивление которого по постоянному току равно приблизительно 10 Ом на 300м. В любом случае можно легко приобрести кабель, в котором диэлектрическим материалом является полиуретан или полиэтилен. Если требуется кабель длиной от 200 до 1500 фут. (457 м), лучше всего подойдет кабель RG6/U. При тех же электрических характеристиках, что у кабеля RG59/U, его наружный диаметр также примерно равен диаметру кабеля RG59/U. Кабель RG6/U поставляется в катушках длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут.(609 м) и изготавливается из различных диэлектрических материалов и различных материалов для внешней оболочки. Но диаметр центральной жилы кабеля RG6/U больше (калибр 18), поэтому его сопротивление постоянному току меньше, оно равно приблизительно 8 Ом на 1000 фут. (304 м), а это означает, что сигнал по этому кабелю можно передавать на большие расстояния, чем по кабелю RG59/U.

Параметры кабеля RG11/U выше параметров кабеля RG6/U. В то же время электрические характеристики этого кабеля в основном такие же, как у других кабелей. Можно заказать кабель с центральной жилой калибра 14 или 18 с сопротивлением постоянному току 3-8 Ом на 300м). Поскольку этот кабель из всех трех кабелей имеет наибольший диаметр (0,405 дюйм. (10,3 мм)), то работы по его прокладке выполнять труднее. Кабель RG11/U обычно поставляется в катушках по длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут. (609 м). Для применения в особых условиях производители часто изготавливают модификации кабелей RG59/U, RG6/U и RG11/U.

В результате изменений правил пожарной безопасности и техники безопасности в различных странах все большую популярность в качестве материала для диэлектрика и оболочки приобретает фторопласт (тефлон, или Teflon®) и другие огнестойкие материалы. В отличие от ПВХ эти материалы не выделяют ядовитых веществ при пожаре и поэтому считаются более безопасными.

Для прокладки под землей рекомендуется специальный кабель, укладываемый непосредственно в грунт. Внешняя оболочка такого кабеля содержит влагостойкие и другие защитные материалы, поэтому его можно укладывать прямо в траншею. О способх подземной прогладки кабелей читайте здесь — Прокладка кабеля в земле.

При большом разнообразии видеокабелей для камер можно легко подобрать наиболее подходящий для конкретных условий. После того как определитесь с тем, какой должна быть ваша система, ознакомьтесь с техническими характеристиками оборудования и выполните соответствующие расчеты.

Длина кабеля

Сигнал ослабляется в каждом коаксиальном кабеле, и это ослабление тем больше, чем кабель длиннее и тоньше. Кроме того, ослабление сигнала увеличивается с ростом частоты передаваемого сигнала. Это одна из типичных проблем охранных систем телевизионного наблюдения (СТН) в целом.

Например, если монитор находится на расстоянии 300м от телекамеры, то сигнал ослабляется примерно на 37%. Самое плохое в этом то, что потери могут быть неочевидными. Поскольку вы не видите потерянную информацию, то можете даже не догадываться о том, что такая информация вообще была. Во многих видеоохранных системах СТН есть кабели длиной по несколько сотен и тысяч метров, и если потери сигналов в них велики, то изображения на мониторах будут серьезно искажены. Если расстояние между камерой и монитором превышает 200м, необходимо предпринять особые меры для обеспечения хорошей передачи видеосигнала.

Оконечная нагрузка кабеля

В системах телевизионного охранного наблюдения сигнал передается от камеры к монитору. Обычно передача идет по коаксиальному кабелю. Правильная оконечная нагрузка кабеля существенно влияет на качество изображения.

Используя номограмму (Рис. 1) можно определить значение напряжения подаваемого на видеокамеру (только для кабелей с медной жилой) задавшись сечением кабеля, максимальным током и удалением от источника питания. Полученное значение напряжения нужно сравнить с минимально допустимым значением напряжения, при котором камера может стабильно работать. Если значение меньше допустимого, то необходимо увеличить сечение используемых кабелей или использовать другую схему электропитания.

Номограмма рассчитана на источник электропитания видеокамер постоянным током с напряжением 12В.

Рис 1. Номограмма для определения напряжения на камере.

Волновое сопротивление (импеданс) коаксиального кабеля находится в диапазоне от 72 до 75 Ом, необходимо, чтобы сигнал передавался по однородной линии в любой точке системы для предотвращения искажения изображения и обеспечения надлежащей передачи сигнала от телекамеры к монитору. Импеданс кабеля должен быть постоянным и равным 75 Ом на всей его длине. Чтобы видеосигнал передавался от одного устройства к другому правильно и с малыми потерями, выходной импеданс телекамеры должен быть равен импедансу (волновому сопротивлению) кабеля, который, в свою очередь, должен быть равен входному импедансу монитора. Оконечная нагрузка любого видеокабеля должна быть равна 75 Ом. Обычно кабель подсоединен к монитору и одно это уже обеспечивает соблюдение указанного выше требования.

Обычно импеданс видеовхода монитора регулируется переключателем, расположенным около сквозных разъемов (вход/ выход), предназначенных для подсоединения дополнительного кабеля к другому устройству. Этот переключатель позволяет включить нагрузку величиной 75 Ом, если монитор является конечной точкой передачи сигнала, или включить высокоомную нагрузку (Hi-Z) и передать сигнал на второй монитор. Ознакомьтесь с техническими характеристиками оборудования и инструкциями к нему, чтобы определить требуемую оконечную нагрузку. Если оконечная нагрузка будет выбрана неверно, изображение обычно бывает слишком контрастным и слегка зернистым. Иногда изображение двоится, бывают и другие искажения.

Характеристика радиочастотных кабелей типа РК — RG

РК-75-1,5-11 М 1*0,24 0,24 1,5 ПЭ ОМ 0,08/60% ПЭ 2,4 8,4 0,32 50 BNC RG-58 пайка
РК-75-2-11 М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/92% ПЭ 3,3 16 0,22 300 BNC RG-58 пайка
РК-75-2-11а М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/75% ПЭ 3,3 14 0,23 200 BNC RG-58 пайка
РК-75-2-13 ЛМ 7*0,12 0,36 2,2 ПЭ ОМЛ 0,1/92% ПЭ 3,3 14,7 0,2 350 BNC RG-58 пайка
РК-75-3-32 М 1*0,6 0,6 2,7 ВПЭ ОМ 0,1/90% ПВХ 4,6 28,4 0,12 450 BNC RG-58, RG-59
РК-75-3,7-322а М 1*0,6 0,8 3,7 ВПЭ АЛ+ОМЛ 0,1/лм65% ПВХ 6 37,3 0,085 600 BNC RG-59
РК-75-4-11 М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,08 600 BNC RG-6 пайка
РК-75-4-11а М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/75% ПЭ 6,2±0,3 40 0,13 600 BNC RG-6 пайка
РК-75-4-12 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,09 600 BNC RG-6 пайка
РК-75-4-15 М 1*0,72 0,72/td> 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,08 600 BNC RG-6 пайка
РК-75-4-16 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,09 600 BNC RG-6 пайка
РК-75-4,9-322а М 1*1,1 1,1 4,9 ПЭ АЛ+ОМЛ 0,15/лм65% ПВХ 7,15 51 0,06 750 BNC RG-6
РК-75-9-12 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПВХ 12,2±0,8 189 0,06 Магистральный
РК-75-9-13 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПЭ 12,2±0,8 169 0,06 Магистральный
RG-59 М 1*0,81 0,81 3,66 ВПЭ АЛ+ОМЛ 0,15/67% ПВХ, ПЭ 6 31 0,085 600 BNC RG-59
RG-6U RG-6WE СОЖ М 1*1,02 1*1,02 1,02 1,02 4,4 ВПЭ 4,7 ВПЭ АЛ+ОМЛ АЛ+ОМЛ 0,15/32% 0,15/64% ПВХ, ПЭ ПВХ, ПЭ 7 6,9 36 45 0,09 0,06 650 BNC RG-6 обжим BNC RG-6
RG-11 СОЖ 1*1,63 1,63 7,11 ВПЭ АЛ+ОМЛ /60% ПВХ, ПЭ 10,3 166 0,05 Магистральный

Кабели представляют собой коаксиальный кабель с волновым сопротивлением 75 ом и диаметром 2,2 — 4,4 мм и несколько проводов питания сечением 0,35 — 0,75 мм2, объединённые общей оболочкой из поливинилхлоридного пластиката (для внутренней установки), светостабилизированного полиэтилена (для внешней установки) или термопластичной безгалогенной композиции (КВК-П-2 нг(С)-HF 2х0.50).

Для систем видеонаблюдения промышленностью выпускаются несколько типов комбинированных кабелей, специально предназначенных для передачи видеосигнала с одновременным подключением питания видеокамер или сигналов управления, а также микрофонных устройств (ККСЭВ, ККСЭВГ, ККСЭПГ).

Электрическое сопротивление постоянному току при 20°С, не более Ом/км:           — для сечения 0.35 мм2 — 55.5;           — для сечения 0.50 мм2 — 40.5;

          — для сечения 0.75 мм2 — 25.5.

Вид климатического исполнения (по ГОСТУ 15150-69):           — УХЛ, категория размещения 1, 2 для кабелей с оболочкой из СПЭ;

          — УХЛ, категория размещения 2.1, 3, 4 для кабелей с оболочкой из ПВХ.

Окружающая среда для кабеля:           — с ПВХ оболочкой — от минус 40°С до плюс 70°С;

          — с СПЭ оболочкой — от минус 40°С до плюс 80°С.

Срок службы кабелей: — с ПВХ оболочкой — 12 лет,

— с П/Э оболочкой — 15 лет.

Более подробную информацию по выбору кабеля для СВН читайте здесь (Выбор видеокабеля для СВН), а также здесь (Коаксиальный кабель в системах видеонаблюдения).

Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины
Сечение, вес и сопротивление медных проводов

Без изоляции

С изоляцией эмалью

Диаметр, мм

Сечение, мм2

Сопротивл. 1 м

при 20°С, Ом (уд.сопр.)

Длина

на 1Ом, м

Диаметр, мм

Вес 100 м, г

Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

В монтажной практике применяются круглые провода, для которых существует следующая формула расчёта сечения проводов по его диаметру:

S = πd2 / 4 = 0, 785 d2,

где S — сечение провода, мм2 ; π — отношение длины окружности к диаметру, принятое равным 3, 14;

d — диаметр провода, мм.

Номограмма расчета сопротивления

На крайних шкалах выбрать длину и сечение, соединить линейкой, на пересечении со средней шкалой прочитать сопротивление. ВНИМАНИЕ! Это сопротивление одного провода, кабель обычно

содержит два провода, общее сопротивление будет вдвое больше.

Многожильный провод представляет собой свитые вместе много одножильных проводков, поэтому, чтобы определить сечение многожильного провода нужно, сначала определить штангенциркулем или микрометром сечение одной проволочки многожильного провода и затем умножить на количество проводков в одном проводе.

Можно приблизительно определить сечение многожильного провода в кабеле без замера отдельных проводков, измерив общий диаметр всех свитых проволочек. Но так как проволочки круглые, то между ними имеются воздушные зазоры, и это надо при определении сечения провода учесть. При замере диаметра надо проследить, что бы многожильный провод ни сплющился. Для исключения площади зазоров, нужно полученный результат вычислений сечение провода по формуле умножить на коэффициент 0,7854.

По требованиям НПБ 88-2001* п.12.64. «Диаметр медных жил проводов и кабелей должен быть определён из расчёта допустимого напряжения, но не менее 0,5 мм.» Следовательно:

S = π × d2 / 4 = 3,14 × 0,25 / 4 = 0,19625 мм2 Из расчёта видно, что поперечное сечение провода применяемого для шлейфов пожарной сигнализации должно быть не менее 0,2 мм2

Для шлейфов охранной сигнализации необходимо применять кабель (например, КСПВ) сечением не менее 0,4 мм каждого провода.

Подключение источников электропитания комплексной системы безопасности к сети энергоснабжения осуществляется трехпроводным кабелем. Сечение заземляющего провода должно быть не менее 1,5 мм2. Но, так как сечение проводников в кабеле сечением до 16 мм2 должно быть одинаковым, то подключение необходимо производить трёхпроводным кабелем сечением не менее 1,5мм2, согласно раздела 7 «Электрооборудование специальных установок» ПУЭ издание седьмое , Глава 7.1 «Электропроводки кабельных линий».

При длинных линиях питания учитывайте следующее:

Контакты реле, клеммные соединители (колодки) создают дополнительное сопротивление цепи питания, которое со временем будет увеличиваться. Предусмотрите соответствующий запас. Чем больше диаметр (сечение) провода, тем меньше его удельное сопротивление (падение напряжения питания соответственно тоже меньше). Провода в своей маркировке могут указывать как диаметр провода (КСПВ 4х0,5 — диаметр каждого из 4-х проводов 0,5мм) так и сечение (ШВВП 2х0,5 — сечение каждого из 2-х проводов 0,5 мм.квадратных). Будьте внимательны. Параллельное соединение двух проводов увеличивает вдвое их общее сечение, но не диаметр!

Есть такое понятие — плотность тока. Измеряется А/мм.квадратный (Ампер на квадратный милиметр сечения). Чем больше плотность тока, тем больше проводник будет греться, соответственно при плотной укладке проводов выбирайте из сечение, обеспечивающее плотность тока порядка 2 А/мм.квадратный (для проводника диаметром D=0.5мм его сечение составит 0,196 мм.квадратных, соответственно максимальный ток для него Imax=2*0,196=0,4А=400мА). Для одиночных проводов можете взять значение плотности тока побольше, но значения 5 А/мм.квадратный лучше не превышать.

Расчеты по формулам более точны, чем по таблицам, и необходимы в тех случаях, когда в таблицах отсутствуют нужные данные.

Закон Ома позволяет нам отображать характеристики электрических цепей через взаимосвязь четырех основных компонент:

  • A — ток (в Амперах)
  • V — напряжение (в Вольтах)
  • R — сопротивление (в Омах)
  • P — мощность (в Ваттах)

Взаимосвязь этих компонент между собой показана на так называемом «классическом колесе» (смотри рисунок ниже)

Эта простая и удобная схема помогает нам понять фундаментальные взаимосвязи в электрических цепях.

Сопротивление провода (в омах) вычисляется по формуле:

где ρ — удельное сопротивление (по таблице);I — длина провода, м;S — площадь поперечного сечения провода, мм2;d — диаметр провода, мм.

Длина провода из этих выражений определяется по формулам:

Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

В монтажной практике применяются преимущественно круглые провода. Для таких проводов существует следующая формула расчёта сечения проводов по его диаметру:

S = πd2 / 4 = 0, 785 d2

где S — сечение провода, мм2 ; π — отношение длины окружности к диаметру, принятое равным 3, 14;

d — диаметр провода, мм.

Необходимое сечение кабеля можно рассчитать по формуле:

S = 2 * p / (Uнач — Uкон) * I * L

где S – необходимое сечение кабеля; ρ – удельное сопротивление; Uнач – напряжение выдаваемое источником бесперебойного питания; Uкон – напряжение при котором работает оповещатель; I – ток нагрузки;

L – длинна линии оповещения.

Перевод сечения в диаметр производится по формуле:

D = Корень (S / 0,78)

Пример, исходные данные:

Удельное сопротивление меди (ρ) – 0,0175; Источник бесперебойного питания выдает напряжение равное (Uнач ) – 20,5В; Минимальное напряжение при котором работает оповещатель (Uкон) – 18В; Ток потребляемый оповещателем (I)– 0,6А;

Длинна линии оповещения (L) – 70м.

S = 2 * 0,0175 / (20,5 — 18) * 0,6 * 70 = 0,59мм2

D = Корень (0,59 / 0,78) = 0,87мм

Приведенные расчеты являются ориентировочными, не учитывают изменение сопротивления меди в зависимости от сечения кабеля (см. таблицу выше «Сечение, вес и сопротивление медных проводов»), расположение оповещателей в разных местах линии оповещения.

Берем, например, кабель КСПВ-0,5. Его диаметр 0,5 мм — сечение 0,196 мм.квадратных. Сопротивление одного метра каждого провода этого кабеля — 0,08 Ом, 100 метров — 8 Ом, если учесть, что питание приборов сигнализации осуществляется по двух проводной линии, то сопротивление 100 метров шлейфа питания составит 16 Ом. Поэтому при токе нагрузки, например, 200 мА (0,2А), напряжение питания на такой линии упадет на U=0.2*16=3,2 Вольт. При 12 Вольт в начале шлейфа в месте его окончания будет 12-3,2=8,8 Вольт.

Если смотреть корректно, то падение напряжения питания будет распределено по участкам цепи (ясно из следующего рисунка).

Желающие могут рассчитать его отдельно для участков R1, R2…Rn. (I1 = Iи1+Iи2…+Iиn, I2 = Iи2…+In и так далее).

Для автоматизации расчетов можно использовать специализированное программное обеспечение, приведенное в ссылках внизу публикации.

Например, программа “Wire” от “Авангардспецмонтаж”.

В программе предусмотрены следующие варианты расчетов:          - расчет при использовании кабелей одинакового сечения;          - расчет при известных сечениях для разных участков цепи;

         - расчет напряжений при известных сечениях на участках цепи.

Диаметр проволоки (без изоляции) измеряют микрометром или штангенциркулем. Для многопроволочного проводника сечение равно сечению одной проволоки, умноженному на их число:

S = 0, 785 d2 n

где n — число проволок, а остальные обозначения те же, что и в предыдущей формуле.

Сопротивление R2 при температуре t2 может быть определено по формуле:

R2 = R1,

где а — температурный коэффициент электросопротивления (из таблицы);R1 — сопротивление при некоторой начальной температуре t1.

Обычно за t1 принимают 18°С, и во всех приведенных таблицах указана величина R1 для t1 = 18°С.

Допустимая сила тока при заданной норме плотности тока А/мм2 находится из формулы:

I = 0,785*d2

Необходимый диаметр провода по заданной силе тока определяют по формуле:

Если норма нагрузки D = 2а/мм2, то формула принимает вид:

Условие замены медного провода алюминиевым:

S(ал) ≈ 1,65*S(м)

S(ал), S(м) — сечение алюминиевых и медных проводов, мм2

Ток плавления для тонких проволочек с диаметром до 0,2 мм подсчитывается по формуле

где d — диаметр провода, мм;k — постоянный коэффициент, равный для меди 0,034, для никелина 0,07, для железа 0,127.

Диаметр провода отсюда будет:

d = k * Iпл + 0,005

Материал

Удельное сопротивление,

Ом x мм2

Удельный вес, г/см3

Температурный коэффициент электросопротивления

Температура плавления, °С

Максимальная рабочая температура; °С

м

(р)

Медь

+0,004

Алюминий

+0,004

Железо

+0,005

Сталь

+0,0052

Никелин

+0,00022

Константан

—0,000005

Манганин

+0,00002

Нихром

+0,00017

Подключение силовых электромагнитов в системах контроля доступа следует производить двухпроводным шнуром (например ШВВП 2*0,75) сечением рассчитанным по потребляемой мощности устройства. Расчёт проводить по формуле:

S = ρ x L х I / U где: S – площадь сечения проводника, ( мм2 )

ρ – удельное сопротивление материала (меди 0,0178 Ом x мм2/м)L – длина проводника (м)I – ток протекающий по проводнику (А)U – падение напряжения на проводнике (В), обычно принимается равным 5% от напряжения приложенном к проводнику.

Рекомендации по монтажу проводов питания 12-вольтовых приборов (датчики, извещатели, видеокамеры и прочее электронное оборудование).

1. Основные ограничения

1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия – 1В. 1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

2. Справочные данные

Сопротивление 100м медного провода (двойного): а) для провода сечением 0,3 5мм2 – 10,3 Ом,

б) для провода сечением 9,0 мм2 – 0,4 Ом.

В промежутке между этими значениями – обратно пропорционально сечению провода.

3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания

Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:

Smin = 0,035 * ( i1 * L1 + i2 * L2 +… + ik * Lk), где

L1, L2, … Lk, – значения длины участка провода питания от блока питания до каждого из изделий, м;i1, i2, ik – токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;Smin — минимально-допустимое сечение провода, мм2.

Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид:

Smin = 0,035 * iср * ( L1 + L2 +… + Lk ).

Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным значениям в таблице в 2 раза. При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2. Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

Зависимость сечения провода (S) от длины удаленной линии питания и мощности нагрузки

Оценить величину напряжения на нагрузке с учётом падения напряжения на соединительной линии питания можно по следующей формуле в соответствии с эквивалентной схемой приведенной на рисунке.

UН = U0 – 2 * RL * IН

здесь: 2*RL = 3,6*10–2*L/S — сопротивление 2-х медных токопроводящих жил кабеля (соединительной линии) электропитания;U0 — выходное напряжение ИБП (В); IН — ток потребляемый нагрузкой (А);L — длина кабеля (соединительной линии) электропитания (м); S — сечение токопроводящей жилы кабеля электропитания (мм2).

Чем провода отличаются от кабелей

Провод — это одна неизолированная, одна или более изолированных жил, поверх которых, в зависимости от условий прокладки и эксплуатации, может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой. Провода могут быть голыми и изолированными.

Голые провода

Голыми называют провода, токопроводящие жилы которых не имеют никаких защитных или изолирующих покрытий. Голые провода (ПСО, ПС, А, АС и т. д.) в основном применяют для воздушных линий электропередач. Изолированными являются провода, токопроводящие жилы которых покрыты изоляцией из резины или пластмассы. Эти провода имеют поверх изоляции оплетку из хлопчатобумажной пряжи или оболочку из резины, пластмассы или металлической ленты. Изолированные провода подразделяют на защищенные и незащищенные.

Защищенные провода

Защищенными называют изолированные провода, имеющие поверх электрической изоляции оболочку, предназначенную для герметизации и защиты от внешних воздействий. К ним относятся провода АПРН, ПРВД, АПРФ и др. Незащищенным изолированным проводом называется провод, не имеющий поверх электрической изоляции оболочки. Это провода АПРТО, ПРД, АППР, АППВ, ППВ и др.

Электрические шнуры

Шнуром называется провод, состоящий из двух и более изолированных гибких или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллель но, покрытых в зависимости от условий эксплуатации неметаллической оболочкой или другими защитными покровами.

Кабели

Кабелем называется одна или несколько скрученных вместе изолированных жил, заключенных, как правило, в общую резиновую, пластмассовую, металлическую оболочку (НРГ, КГ, АВВГ н др.). Оболочка служит для защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждении.

Установочные провода

Установочные провода предназначены для монтажа силовых и осветительных сетей при неподвижной прокладке на открытом воздухе и внутри помещений. Изготавливают их с медными и алюминиевыми токоведущими жилами, одно- и многожильными, с резиновой и пластмассовой изоляцией, незащищенными и защищенными от легких механических повреждений. Токопроводящие жилы проводов имеют стандартные сечения, мм: 0,35; 0,5; 0,75; 1,0; 1,5; 2,5; 4,0; 6,0; 10,0; 16,0 и т. д.

Рекомендуемая цветовая кодировка жил в силовых кабелях

Количество жил Кабель с зелено-жёлтым проводом заземления
2 коричневый (черный)

синий

 фаза

 ноль

3 зелёный / жёлтый *               коричневый (черный)

синий

 заземление  фаза

 ноль

4 зелёный / жёлтый * синий

чёрный

коричневый

 заземление  фаза А  (R)**

 фаза В  (S)**

 фаза С  (T)**5зелёный / жёлтый *

чёрный

коричневый 

чёрный     

синий    заземление

 фаза

 фаза

 фаза

 ноль6 

и болеезелёный / жёлтый *

остальные  заземление

 не нормируются

*       обязательное обозначение

**      международное обозначение фаз

О маркировке кабелей

Требования ПУЭ:     2.3.23. Каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д.    Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт — номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

Требования СНИП 3-05-06-85     3.22. Провода и кабели, прокладываемые в коробах и на лотках, должны иметь маркировку в начале и конце лотков и коробов, а также в местах подключения их к электрооборудованию, а кабели, кроме того, также на поворотах трассы и на ответвлениях.     3.103. Каждая кабельная линия должна быть промаркирована и иметь свой номер или наименование.     3.104. На открыто проложенных кабелях и на кабельных муфтах должны быть установлены бирки.На кабелях, проложенных в кабельных сооружениях, бирки должны быть установлены не реже чем через каждые 50 — 70 м, а также в местах изменения направления трассы, с обеих сторон проходов через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения.На скрыто проложенных кабелях в трубах или блоках бирки следует устанавливать на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.На скрыто проложенных кабелях в траншеях бирки устанавливают у конечных пунктов и у каждой соединительной муфты.     3.105. Бирки следует применять: в сухих помещениях — из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле — из пластмассы.Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, следует выполнять штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения допускается наносить несмываемой краской.

     3.106. Бирки должны быть закреплены на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1 — 2 мм, или пластмассовой лентой с кнопкой. Место крепления бирки на кабеле проволокой и сама проволока в сырых помещениях, вне зданий и в земле должны быть покрыты битумом для защиты от действия влаги.

Требования ПТЭ ЭП     2.4.5. Каждая КЛ должна иметь паспорт, включающий документацию, указанную в п.2.4.2. диспетчерский номер или наименование.     Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками; на бирках кабелей в начале и конце линии должны быть указаны марка, напряжение, сечение, номер или наименование линии; на бирках соединительных муфт — номер муфты, дата монтажа.

     Бирки должны быть стойкими к воздействию окружающей среды. Они должны быть расположены по длине линии через каждые 50 м на открыто проложенных кабелях, а также на поворотах трассы и в местах прохода кабелей через огнестойкие перегородки и перекрытия (с обеих сторон).

Из практики:На одной стороне проектное обозначение, откуда и куда идёт.На оборотной стороне марка кабеля, кол-во жил, сечение, длина.Круглая бирка — силовой кабель выше 1000ВКвадратная бирка — силовой кабель до 1000В

Треугольная бирка — контрольный кабель

Расшифровка маркировки кабеля и провода

1. Силовой кабель с ПВХ (виниловой) и резиновой изоляцией: ВВГ, ВВГнг, ВВГнг-LS, АВВГ, АВВГнг, АВВГнг-LS, ВБбШв, ВБбШнг, ВБбШнг-LS, АВБбШв, АВБбШнг, АВБбШнг-LS,

КГ — кабель гибкий А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию. В — (первая (при отсутствии А) буква) ПВХ изоляция В — (вторая (при отсутствии А) буква) ПВХ оболочка Г — отсутствие защитного покрова («голый») нг — не поддерживающий горения LS — Low Smoke – с пониженным дымо- и газовыделение Бб – бронированный покров из стальных лент

Шв — наружный покров из ПВХ шланга

2. Кабель с БПИ — кабель с изоляцией из пропитанной бумаги: АСБ, АСБл, АСБ2л, ААБл, СБ, СБл, СБГ

А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию. АБ — алюминиевая броня СБ — (первая или вторая (после А) буква) свинцовая броня л — лавсановая лента 2л — двойная лавсановая лента

Г — отсутствие защитного покрова («голый»)

3. Контрольный кабель: КВВГ, АКВВГ, КВВГнг, АКВВГнг, КВВГнг-LS, АКВВГнг-LS, КВВГэ, АКВВГэ, КВВГэнг-LS, АКВВГэнг-LS, КВБбШв, АКВБбШв, КВБбШнг, АКВБбШнг, КВБбШнг-LS, АКВБбШнг-LS

К — (первая или вторая (после А) буква) — кабель контрольный кроме КГ — кабель гибкий Э — экран

4. Телефонный кабель: ТПпП, ТпПэп, ТПпПз, ТПпэПз ТПпПБбШп, ТПпПзБбШп, ТПпэПзБбШп, ТСВ, ТСВнг

Т — телефонный кабель П — полиэтиленовая изоляция п — поясная изоляция — ленты полиамидные, полиэтиленовые, поливинилхлоридные или полиэтилентерефталатные Э — экран П — полиэтиленовая оболочка З — гидрофобный заполнитель Шп — наружный покров из полиэтиленового шланга

С — станционный кабель

5. Подвесные провода: А — Алюминиевый голый провод АС — Алюминиево-Стальной (чаще употребляется слово «сталеалюминиевый») голый провод

СИП — Самонесущий Изолированный Провод

6. Некоторые типы кабеля расшифровываются особым образом: КСПВ — Кабели для Систем Передачи в Виниловой оболочке КПСВВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, в Виниловой оболочке КПСВЭВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, с Экраном, в Виниловой оболочке ПНСВ — Провод Нагревательный, Стальная жила, Виниловая оболочка ПВ-1, ПВ-3 — Провод с Виниловой изоляцией. 1, 3 — класс гибкости жилы (наиболее применимые классы гибкости жилы для данного типа провода, однако, могут применяться и другие). ПВС — Провод в Виниловой оболочке Соединительный ШВВП — Шнур с Виниловой изоляцией, в Виниловой оболочке, Плоский ПУНП — Провод Универсальный Плоский

ПУГНП — Провод Универсальный Плоский Гибкий

7. Силовой кабель: NYM, NHMH, NYY, NYCY, NYRGY

N — согласно VDE Y — ПВХ H — безгалогеновый ПВХ M — монтажный кабель C — медный экран

RG — броня

8. Кабель итальянского производства имеет специфические обозначения согласно CEI UNEL 35011: FROR F — corda flessibile — гибкая жила R — polivinilclorudo — PVC — ПВХ изоляция O — anime riunite per cavo rotondo — круглый, не плоский кабель

R — polivinilclorudo — PVC — ПВХ оболочка

9. Контрольный кабель: YSLY, LiYCY

Y — ПВХ SL — кабель контрольный

Li — многожильный проводник по VDE

10. Кабель передачи данных «витая пара»: UTP, FTP, S-FTP, S-STP

U — unfoiled (нефольгированный, неэкранированный) F — foiled (фольгированный, экранированный) S — screened (экранированный медными проволоками) S-F — общий экран из фольги + общий плетеный экран S-S — экран каждой пары из фольги + общий плетеный экран

TP — twisted pair — витая пара

11. SAT — от англ. satellite — спутник — кабель для спутникового телевидения

12. Телефонный кабель и кабель для пожарной сигнализации: J-Y(St)Y, J-H(St)H

J- — инсталляционный, установочный кабель Y — ПВХ

(St) — экран из фольги

13. Безгалогеновый огнестойкий кабель: NHXHX FE 180, NHXCHX FE 180

N — согласно VDE HX — сшитая резина C — медный экран

FE 180 — кабель сохраняет свои свойства на протяжении определенного времени (в данном случае 180 минут) в открытом пламени, под напряжением

14. Провода монтажные: H05V-K, H07V-K, N07V-K

H — гармонизированный провод (одобрение HAR) N — соответствие национальному стандарту 05 — номинальное напряжение 300/500 В 07 — номинальное напряжение 450/750 В V — ПВХ изоляция

K — гибкая жила для стационарного монтажа

15. Кабели с изоляцией из сшитого полиэтилена:

N — согласно VDE Y — ПВХ 2Y — полиэтилен 2X — сшитый полиэтилен S — медный экран (F) — продольная герметизация (FL) — продольная и поперечная герметизация E — трехжильный кабель R — броня из круглых стальных проволок J — наличие желто-зеленой жилы

O — отсутствие желто-зеленой жилы

В последнее время все большее применение находят импортные провода, а также инструменты для работы с ними, маркированные по стандарту AWG (American Wire Gauge) – система обозначения толщины проводов и других объектов круглого сечения (прутков, арматуры, трубок, кембриков и т.д.) принятый в США. Чем меньше номер AWG, тем толще диаметр провода. Калибр провода в стандарте AWG отражает его средний диаметр. Подобное „перевёрнутое“ обозначение диаметра имет исторические корни, когда проволоку для проводов изготавливали методом волочения. Номер AWG обозначал количество проходов через уменьшающиеся отверстия в волоке, прежде чем получался нужный диаметр проволоки. Например, толстая (более 8 мм) проволока размера AWG 0 только после 24 протягиваний через станок превращалась в AWG 24, диаметром около 0,5 мм.

Калибры разнятся еще и в зависимости от типа кабеля: для одножильных кабелей AWG переводится в диаметр по одной формуле, для многожильных — по другой. Для справки приведем таблицу перевода наиболее популярных калибров одножильных и многожильных кабелей в диаметр и площадь поперечного сечения проводников.

Одножильный кабель

AWG Диаметр, мм Площадь поперечного сечения, мм2
18 1.020 0.817
19 0.912 0.653
20 0.813 0.519
21 0.724 0.412
22 0.643 0.325
23 0.574 0.259
24 0.511 0.205
25 0.455 0.163
26 0.404 0.128

Многожильный кабель

AWG Количество жил Диаметр, мм Площадь поперечного сечения, мм2
22 7 0.762 0.352
22 19 0.787 0.380
22 26 0.762 0.327
24 7 0.610 0.226
24 10 0.584 0.200
24 19 0.610 0.239
24 42 0.584 0.201
26 7 0.483 0.140
26 10 0.553 0.127
26 19 0.508 0.153

Вопрос выбора сечения кабеля для монтажа электропроводки в доме или квартире очень серьезный. Если данный показатель не будет соответствовать нагрузке в контуре, то изоляция провода просто начнет перегреваться, затем плавится и гореть. Конечный итог – короткое замыкание. Все дело в том, что нагрузка создает определенную плотность тока. И если сечение кабеля будет небольшим, то плотность тока в нем будет большой. Поэтому перед покупкой необходимо провести расчет сечения кабеля по нагрузке.

Поперечное сечение различных кабелей

Конечно, не стоит просто так наугад выбирать провод большего сечения. Это в первую очередь ударит по вашему бюджету. С меньшим сечением кабель может не выдержать нагрузку и быстро выйдет из строя. Поэтому лучше всего начать с вопроса, как рассчитать нагрузку на кабель? А уже потом по этому показателю подбирать и сам электрический провод.

Расчет мощности

Самый простой способ – это рассчитать суммарную мощность, которую будет потреблять дом или квартира. Этот расчет будет использован для подбора сечения провода от столба ЛЭП до вводного автомата в коттедж или от подъездного щита в квартиру на первую распределительную коробку. Точно так же рассчитываются провода по шлейфам или комнатам. Понятно, что входной кабель будет иметь самое большое сечение. И чем дальше от первой распределительной коробки, тем данный показатель будет уменьшаться.

Но вернемся к расчетам. Итак, в первую очередь необходимо определить суммарную мощность потребителей. У каждого из них (бытовые приборы и лампы освещения) на корпусе этот показатель обозначен. Если не нашли, смотрите в паспорте или в инструкции.

Мощность потребления некоторых электроприборов

После чего все мощности необходимо сложить. Это и есть суммарная мощность дома или квартиры. Точно такой же расчет необходимо сделать и по контурам. Но тут есть один спорный момент. Некоторые специалисты рекомендуют умножить суммарный показатель на понижающий коэффициент 0,8, придерживаясь того правила, что не все приборы будут одновременно включаться в цепь. Другие же, наоборот, предлагают умножить на повышающий коэффициент 1,2, тем самым создавая некий запас на будущее, ввиду того, что есть большая вероятность появления в доме или квартире дополнительных бытовых приборов. По нашему мнению второй вариант – оптимальный.

Выбор кабеля

Теперь, зная суммарный показатель мощности, можно выбрать и сечение проводки. В ПУЭ установлены таблицы, по которым легко сделать этот выбор. Приведем несколько примеров для электрической линии, находящейся под напряжением 220 вольт.

  • Если суммарная мощность составила 4 кВт, то сечение провода будет 1,5 мм².
  • Мощность 6 кВт, сечение 2,5 мм².
  • Мощность 10 кВт – сечение 6 мм².

Точно такая же таблица есть и для электрической сети напряжением 380 вольт.

Расчет токовой нагрузки

Это самое точное значение вычисления, проводимого по нагрузке тока. Для этого используется формула:

I=P/U cos φ, где

  • I – это сила тока;
  • P – суммарная мощность;
  • U – напряжение в сети ( в данном случае 220 В);
  • cos φ – коэффициент мощности.

Есть формула и для трехфазной электрической сети:

I=P/(U cos φ)*√3.

Именно по показателю силы тока определяется сечение кабеля по тем же таблицам в ПУЭ. И опять приведем несколько примеров.

  • Сила тока 19 А – сечение кабеля 1,5 мм².
  • 27 А – 2,5 мм².
  • 46 А – 6 мм².

Как и в случае определения сечения по мощности, здесь также лучше всего умножить показатель силы тока на повышающий коэффициент 1,5.

Коэффициенты

Существуют определенные условия, при которых сила тока внутри проводки может повышаться или понижаться. К примеру, в открытой электрической проводке, когда провода укладываются по стенам или потолку, сила тока будет повышенной, чем в закрытой схеме. Это связано напрямую с температурой окружающей среды. Чем она больше, тем большей силы тока может данный кабель пропускать.

Внимание! Все выше перечисленные таблицы ПУЭ рассчитаны при условии эксплуатации проводов при температуре +25С с температурой самих кабелей не больше +65С.

То есть, получается так, что если в один лоток, гофру или трубу укладываются сразу несколько проводов, то внутри проводки температура будет повышенной за счет нагрева самих кабелей. Это приводит к тому, что допустимая нагрузка тока снижается на 10-30 процентов. То же самое касается и открытой проводки внутри отапливаемых помещений. Поэтому можно сделать вывод: при проведении расчета сечения кабеля в зависимости от нагрузки тока при повышенных температурах эксплуатации можно выбирать провода меньшей площади. Это, конечно, неплохая экономия. Кстати, таблицы снижающих коэффициентов в ПУЭ тоже есть.

Есть еще один момент, который касается длины используемого электрического кабеля. Чем длиннее разводка, тем больше потери напряжения на участках. В любых расчетах используются потери, равные 5%. То есть, это максимум. Если потери будут больше данного значения, то придется увеличивать сечение кабеля. Кстати, самостоятельно рассчитать токовые потери несложно, если знать сопротивление проводки и токовую нагрузку. Хотя оптимальный вариант – использовать таблицу ПУЭ, в которых установлена зависимость момента нагрузки и потерь. В данном случае момент нагрузки – это произведение мощности потребления в киловаттах и длины самого кабеля в метрах.

Разберем пример, в котором установленный кабель длиною 30 мм в сети переменного тока напряжением 220 вольт выдерживает нагрузку 3 кВт. При этом момент нагрузки будет равен 3*30=90. Смотрим в таблицу ПУЭ, где показано, что этому моменту соответствуют потери 3%. То есть, это меньше номинала в 5%. Что допустимо. Как уже было сказано выше, если расчетные потери превысили бы пятипроцентный барьер, то пришлось бы приобретать и устанавливать кабель большего сечения.

Внимание! Данные потери сильно сказываются на освещении с низковольтными лампами. Потому что на 220 вольтах 1-2 В не сильно отражаются, а вот на 12 В видно сразу.

В настоящее время алюминиевые провода в разводках используются редко. Но необходимо знать, что их сопротивление больше, чем у медных, в 1,7 раза. А, значит, и потери у них во столько же раз больше.

Что касается трехфазных сетей, то здесь момент нагрузки больше в шесть раз. Это зависит от того, что сама нагрузка распределяется по трем фазам, а это соответственно тронное увеличение момента. Плюс двоенное увеличение за счет симметричного распределения потребляемой мощности по фазам. При этом в нулевом контуре ток должен быть равен нулю. Если распределение по фазам несимметричное, а это приводит к увеличению и потерь, то придется рассчитывать сечение кабеля по нагрузкам в каждом проводе по отдельности и выбирать его по максимальному расчетному размеру.

Заключение по теме

Как видите, для проведения расчета сечения кабеля по нагрузкам, приходится учитывать различные коэффициенты (понижающие и повышающие). Самостоятельно, если вы в электрике разбираетесь на уровне любителя или начинающего мастера, сделать это непросто. Поэтому совет – пригласите высококвалифицированного специалиста, пусть он сам сделает все расчеты и составит грамотно схему проводки. А вот монтаж можно провести и своими руками.

otoplenie-help.ru

Как правильно провести расчет сечения кабеля по нагрузке

Вопрос выбора сечения кабеля для монтажа электропроводки в доме или квартире очень серьезный. Если данный показатель не будет соответствовать нагрузке в контуре, то изоляция провода просто начнет перегреваться, затем плавится и гореть. Конечный итог – короткое замыкание. Все дело в том, что нагрузка создает определенную плотность тока. И если сечение кабеля будет небольшим, то плотность тока в нем будет большой. Поэтому перед покупкой необходимо провести расчет сечения кабеля по нагрузке.

Поперечное сечение различных кабелей

Конечно, не стоит просто так наугад выбирать провод большего сечения. Это в первую очередь ударит по вашему бюджету. С меньшим сечением кабель может не выдержать нагрузку и быстро выйдет из строя. Поэтому лучше всего начать с вопроса, как рассчитать нагрузку на кабель? А уже потом по этому показателю подбирать и сам электрический провод.

Расчет мощности

Самый простой способ – это рассчитать суммарную мощность, которую будет потреблять дом или квартира. Этот расчет будет использован для подбора сечения провода от столба ЛЭП до вводного автомата в коттедж или от подъездного щита в квартиру на первую распределительную коробку. Точно так же рассчитываются провода по шлейфам или комнатам. Понятно, что входной кабель будет иметь самое большое сечение. И чем дальше от первой распределительной коробки, тем данный показатель будет уменьшаться.

Но вернемся к расчетам. Итак, в первую очередь необходимо определить суммарную мощность потребителей. У каждого из них (бытовые приборы и лампы освещения) на корпусе этот показатель обозначен. Если не нашли, смотрите в паспорте или в инструкции.

Мощность потребления некоторых электроприборов

После чего все мощности необходимо сложить. Это и есть суммарная мощность дома или квартиры. Точно такой же расчет необходимо сделать и по контурам. Но тут есть один спорный момент. Некоторые специалисты рекомендуют умножить суммарный показатель на понижающий коэффициент 0,8, придерживаясь того правила, что не все приборы будут одновременно включаться в цепь. Другие же, наоборот, предлагают умножить на повышающий коэффициент 1,2, тем самым создавая некий запас на будущее, ввиду того, что есть большая вероятность появления в доме или квартире дополнительных бытовых приборов. По нашему мнению второй вариант – оптимальный.

Выбор кабеля

Теперь, зная суммарный показатель мощности, можно выбрать и сечение проводки. В ПУЭ установлены таблицы, по которым легко сделать этот выбор. Приведем несколько примеров для электрической линии, находящейся под напряжением 220 вольт.

  • Если суммарная мощность составила 4 кВт, то сечение провода будет 1,5 мм².
  • Мощность 6 кВт, сечение 2,5 мм².
  • Мощность 10 кВт – сечение 6 мм².
Читайте также:  Как правильно определить сечение провода по току

Точно такая же таблица есть и для электрической сети напряжением 380 вольт.

Расчет токовой нагрузки

Это самое точное значение вычисления, проводимого по нагрузке тока. Для этого используется формула:

I=P/U cos φ, где

  • I – это сила тока;
  • P – суммарная мощность;
  • U – напряжение в сети ( в данном случае 220 В);
  • cos φ – коэффициент мощности.

Есть формула и для трехфазной электрической сети:

I=P/(U cos φ)*√3.

Именно по показателю силы тока определяется сечение кабеля по тем же таблицам в ПУЭ. И опять приведем несколько примеров.

  • Сила тока 19 А – сечение кабеля 1,5 мм².
  • 27 А – 2,5 мм².
  • 46 А – 6 мм².

Как и в случае определения сечения по мощности, здесь также лучше всего умножить показатель силы тока на повышающий коэффициент 1,5.

Коэффициенты

Существуют определенные условия, при которых сила тока внутри проводки может повышаться или понижаться. К примеру, в открытой электрической проводке, когда провода укладываются по стенам или потолку, сила тока будет повышенной, чем в закрытой схеме. Это связано напрямую с температурой окружающей среды. Чем она больше, тем большей силы тока может данный кабель пропускать.

Внимание! Все выше перечисленные таблицы ПУЭ рассчитаны при условии эксплуатации проводов при температуре +25С с температурой самих кабелей не больше +65С.

То есть, получается так, что если в один лоток, гофру или трубу укладываются сразу несколько проводов, то внутри проводки температура будет повышенной за счет нагрева самих кабелей. Это приводит к тому, что допустимая нагрузка тока снижается на 10-30 процентов. То же самое касается и открытой проводки внутри отапливаемых помещений. Поэтому можно сделать вывод: при проведении расчета сечения кабеля в зависимости от нагрузки тока при повышенных температурах эксплуатации можно выбирать провода меньшей площади. Это, конечно, неплохая экономия. Кстати, таблицы снижающих коэффициентов в ПУЭ тоже есть.

Есть еще один момент, который касается длины используемого электрического кабеля. Чем длиннее разводка, тем больше потери напряжения на участках. В любых расчетах используются потери, равные 5%. То есть, это максимум. Если потери будут больше данного значения, то придется увеличивать сечение кабеля. Кстати, самостоятельно рассчитать токовые потери несложно, если знать сопротивление проводки и токовую нагрузку. Хотя оптимальный вариант – использовать таблицу ПУЭ, в которых установлена зависимость момента нагрузки и потерь. В данном случае момент нагрузки – это произведение мощности потребления в киловаттах и длины самого кабеля в метрах.

Читайте также:  Провод ПВ 1 – технические характеристики и разновидности

Разберем пример, в котором установленный кабель длиною 30 мм в сети переменного тока напряжением 220 вольт выдерживает нагрузку 3 кВт. При этом момент нагрузки будет равен 3*30=90. Смотрим в таблицу ПУЭ, где показано, что этому моменту соответствуют потери 3%. То есть, это меньше номинала в 5%. Что допустимо. Как уже было сказано выше, если расчетные потери превысили бы пятипроцентный барьер, то пришлось бы приобретать и устанавливать кабель большего сечения.

Внимание! Данные потери сильно сказываются на освещении с низковольтными лампами. Потому что на 220 вольтах 1-2 В не сильно отражаются, а вот на 12 В видно сразу.

В настоящее время алюминиевые провода в разводках используются редко. Но необходимо знать, что их сопротивление больше, чем у медных, в 1,7 раза. А, значит, и потери у них во столько же раз больше.

Что касается трехфазных сетей, то здесь момент нагрузки больше в шесть раз. Это зависит от того, что сама нагрузка распределяется по трем фазам, а это соответственно тронное увеличение момента. Плюс двоенное увеличение за счет симметричного распределения потребляемой мощности по фазам. При этом в нулевом контуре ток должен быть равен нулю. Если распределение по фазам несимметричное, а это приводит к увеличению и потерь, то придется рассчитывать сечение кабеля по нагрузкам в каждом проводе по отдельности и выбирать его по максимальному расчетному размеру.

Заключение по теме

Как видите, для проведения расчета сечения кабеля по нагрузкам, приходится учитывать различные коэффициенты (понижающие и повышающие). Самостоятельно, если вы в электрике разбираетесь на уровне любителя или начинающего мастера, сделать это непросто. Поэтому совет – пригласите высококвалифицированного специалиста, пусть он сам сделает все расчеты и составит грамотно схему проводки. А вот монтаж можно провести и своими руками.

onlineelektrik.ru

Расчет сечения провода по току и мощности - блог СамЭлектрик.ру

Сечение провода – что это и как рассчитать

Выбору площади поперечного сечения проводов (иначе говоря, толщины) уделяется большое внимание на практике и в теории.

В этой статье попробуем разобраться с понятием “площадь сечения” и проанализируем справочные данные.

Расчет сечения провода

Строго говоря, понятие “толщина” для провода используется в разговорной речи, а более научные термины – диаметр и площадь сечения. На практике толщину провода всегда характеризуют площадью сечения.

Рассчитать сечение провода на практике можно очень просто. Зная диаметр (например, измерив его штангенциркулем), можно легко вычислить площадь сечения по формуле

S = π (D/2)2, где

  • S – площадь сечения провода, мм2
  • π – 3,14
  • D – диаметр токопроводящей жилы провода, мм. Его можно измерить, например, штангенциркулем.

Формулу площади сечения провода можно записать в  более удобном виде: S = 0,8 D².

Поправка. Откровенно говоря, 0,8 – округленный коэффициент. Более точная формула:  π (1/2)2 = π / 4 = 0,785. Спасибо внимательным читателям ;)

Рассмотрим только медный провод, поскольку в 90% в электропроводке и электромонтаже применяется именно он. Преимущества медных проводов перед алюминиевыми – удобство в монтаже, долговечность, меньшая толщина (при том же токе).

Но с ростом диаметра (площади сечения) высокая цена медного провода съедает все его преимущества, поэтому алюминий в основном применяют там, где ток превышает значение 50 Ампер. В данном случае используют кабель с алюминиевой жилой 10 мм2 и толще.

Площадь сечения проводов измеряется в квадратных миллиметрах. Самые распространенные на практике (в бытовой электрике) площади сечения: 0,75, 1,5, 2,5, 4 мм2

Есть и другая единица измерения площади сечения (толщины) провода, применяемая в основном в США,  – система AWG. На Самэлектрике есть таблица сечений проводов по системе AWG и перевод из AWG в мм2.

По поводу подбора проводов – я обычно пользуюсь каталогами интернет-магазинов, вот пример медного. Там самый большой выбор, какой я встречал. Ещё хорошо, что всё подробно описывается – состав, применения, и т.д.

Рекомендую почитать также мою статью про выбор сечения провода для постоянного тока там много теоретических выкладок и рассуждений о падении напряжения, сопротивлении проводов для разных сечений, и какое сечение выбрать оптимальнее для разных допустимых падений напряжения.

И ещё статья – Падение напряжения на трехфазных кабельных линиях большой длины. приведен реальный пример объекта, приводятся формулы и рекомендации, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине. И обратно пропорциональны сопротивлению.

  1. Площадь сечения провода (иначе говоря, его толщина) должна быть достаточной для прохождения через него электрического тока. Достаточной – это означает, что при прохождении максимально возможного в данном случае тока нагрев провода будет допустимым (как правило, не более 60 0С)
  2. Сечение провода должно быть достаточным, чтобы падение напряжения на нём не превышало допустимое значение. Это особенно актуально для длинных кабельных линий (десятки и сотни метров) и больших токов.
  3. Толщина провода  и его защитная изоляция должна обеспечивать его механическую прочность, а значит надежность.

Например, для питания люстры в гостиной используются лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А). Вроде бы, вполне достаточно проводов с площадью сечения 0,5 мм2? Но какой электрик в здравом уме будет закладывать такой провод в потолочную плиту? В данном случае как правило применяют 1,5 мм2.

На самом деле, выбор толщины провода зависит от одного параметра – максимальной рабочей температуры. При превышении этой температуры провод и изоляция на нём начнут плавиться и разрушаться. Иначе говоря, максимальный рабочий ток для провода с определенным сечением ограничивается только  максимальной его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Ниже дана общеизвестная таблица сечения проводов для подбора площади сечения медных проводов в зависимости от тока. Исходные данные – площадь сечения проводника.

Максимальный ток для разной толщины медных проводов

Таблица 1

(Данные из таблицы 1.3.4 ПУЭ)

Сечение токо-проводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
одного двух жильного одного трех жильного
0,5 11
0,75 15
1 17 15 14
1,2 20 16 14,5
1,5 23 18 15
2 26 23 19
2,5 30 25 21
3 34 28 24
4 41 32 27
5 46 37 31
6 50 40 34
8 62 48 43
10 80 55 50
16 100 80 70
25 140 100 85
35 170 125 100
50 215 160 135
70 270 195 175
95 330 245 215
120 385 295 250

Выделены номиналы проводов, используемых в бытовой электрике. “Один двужильный” – это кабель с двумя проводами, один из них – Фаза, другой – Ноль. То есть, это однофазное питание нагрузки. “Один Трехжильный” – это при трехфазном питании.

Эта таблица показывает, при каких токах и в каких условиях можно эксплуатировать провод данного сечения.

А что там свежего в группе ВК СамЭлектрик.ру?

Животрепещущий пример из практики – если на розетке написано “Max.16A”, то можно для этой одной розетки проложить провод сечением 1,5мм2. Но обязательно защитить розетку автоматическим выключателем на ток не более 16А, а лучше – 13, или даже 10А. На эту тему можно почитать мою статью Про замену и выбор защитного автомата.

В таблице одножильный провод – означает, что рядом (на расстоянии менее 5 диаметров провода) не проходит больше никаких проводов. Двужильный провод – два провода рядом, как правило, в одной общей изоляции. Это более тяжелый тепловой режим, поэтому максимальный ток меньше. И чем больше проводов в кабеле или пучке, тем меньше должен быть максимальный ток для каждого проводника из-за возможного взаимного нагрева.

Эту таблицу я считаю не совсем удобной для практики. Ведь чаще всего исходный параметр – это мощность потребителя электроэнергии, а не ток,  и исходя из этого нужно выбирать провод.

Как найти ток, зная мощность? Нужно мощность Р (Вт) поделить на напряжение (В), и получим ток (А):

I = P/U

Как найти мощность, зная ток? Нужно ток (А) умножить на напряжение (В), получим мощность (Вт):

P = I U

Эти формулы – для случая активной нагрузки (потребители в жилах помещениях, типа лампочек и утюгов). Для реактивной нагрузки обычно используется коэффициент от 0,7 до 0,9 (в промышленности, где работают мощные трансформаторы и электродвигатели).

Предлагаю вам вторую таблицу, в которой исходные параметры – потребляемый ток и мощность, а искомые величины – сечение провода и ток отключения защитного автоматического выключателя.

Выбор толщины провода и автоматического выключателя, исходя из потребляемой мощности и тока

Ниже – таблица выбора сечения провода, исходя из известной мощности или тока. А в правом столбце – выбор автоматического выключателя, который ставится в этот провод.

Таблица 2

Макс. мощность, кВт Макс. ток нагрузки, А Сечение провода, мм2 Ток автомата, А
1 4.5 1 4-6
2 9.1 1.5 10
3 13.6 2.5 16
4 18.2 2.5 20
5 22.7 4 25
6 27.3 4 32
7 31.8 4 32
8 36.4 6 40
9 40.9 6 50
10 45.5 10 50
11 50.0 10 50
12 54.5 16 63
13 59.1 16 63
14 63.6 16 80
15 68.2 25 80
16 72.7 25 80
17 77.3 25 80

Красным цветом выделены критические случаи, в которых лучше перестраховаться и не экономить на проводе, выбрав провод потолще, чем указано в таблице. А ток автомата – поменьше.

Глядя в табличку, можно легко выбрать сечение провода по току, либо сечение провода по мощности.

А также – выбрать автоматический выключатель под данную нагрузку.

В этой таблице данные приведены для следующего случая.

  • Одна фаза, напряжение 220 В
  • Температура окружающей среды +30 0С
  • Прокладка в воздухе или коробе (в закрытом пространстве)
  • Провод трехжильный, в общей изоляции (кабель)
  • Используется наиболее распространенная  система TN-S с отдельным проводом заземления
  • Достижение потребителем максимальной мощности – крайний, но возможный случай. При этом максимальный ток может действовать длительное время без отрицательных последствий.

Если температура окружающей среды будет на 20 0С выше, или в жгуте будет несколько кабелей, то рекомендуется выбрать большее сечение (следующее из ряда). Особенно это касается тех случаев, когда значение рабочего тока близко к максимальному.

Вообще, при любых спорных и сомнительных моментах, например

  • возможное в будущем увеличение нагрузки
  • большие пусковые токи
  • большие перепады температур (электрический провод на солнце)
  • пожароопасные помещения

нужно либо увеличивать толщину проводов, либо более детально подойти к выбору – обратиться к формулам, справочникам. Но, как правило, табличные справочные данные вполне пригодны для практики.

Толщину провода можно узнать не только из справочных данных. Существует эмпирическое (полученное опытным путем) правило:

Правило выбора площади сечения провода для максимального тока

Подобрать нужную площадь сечения медного провода исходя из максимального тока можно, используя такое простое правило:

Необходимая площадь сечения провода равна максимальному току, деленному на 10.

Это правило дается без запаса, впритык, поэтому полученный результат необходимо округлять в большую сторону до ближайшего типоразмера. Например, ток 32 Ампер. Нужен провод сечением 32/10 = 3,2 мм2. Выбираем ближайший (естественно, в бОльшую сторону) – 4 мм2. Как видно, это правило вполне укладывается в табличные данные.

 Важное замечание. Это правило работает хорошо для токов до 40 Ампер. Если токи больше (это уже за пределами обычной квартиры или дома, такие токи на вводе) – надо выбирать провод с ещё большим запасом – делить не на 10, а на 8 (до 80 А)

То же правило можно озвучить для поиска максимального тока через медный провод при известной его площади:

Максимальный ток равен площади сечения умножить на 10.

И в заключение – опять про старый добрый алюминиевый провод.

Алюминий пропускает ток хуже, чем медь. Этого знать достаточно, но вот немного цифр. Для алюминия (того же сечения, что и медный провод) при токах до 32 А максимальный ток будет меньше, чем для меди всего на 20%. При токах до 80 А алюминий пропускает ток хуже на 30%.

Для алюминия эмпирическое правило будет таким:

Максимальный ток алюминиевого провода равен площади сечения умножить на 6.

Считаю, что знаний, приведенных в данной статье, вполне достаточно, чтобы выбрать провод по соотношениям “цена/толщина”, “толщина/рабочая температура” и “толщина/максимальный ток и мощность”.

Вот в принципе и всё что хотел рассказать про площадь сечения проводов. Если что-то не понятно или есть что добавить – спрашивайте и пишите в комментариях. Если интересно, что я буду публиковать на блоге СамЭлектрик дальше – подписывайтесь на получение новых статей.

Таблица зависимости тока защитного автомата (предохранителя) от сечения

(Дополнение к статье, июнь 2014)

А вот как к максимальному току в зависимости от площади сечения провода относятся немцы. В правом столбце – рекомендация по выбору автоматического (защитного) выключателя.

Таблица 3

Таблица выбора защитного автомата для разного сечения проводов

Как видно, немцы перестраховываются, и предусматривают больший запас по сравнению с нами.

Хотя, возможно, это от того, что таблица взята из инструкции из “стратегического” промышленного оборудования.

По поводу подбора проводов — я обычно пользуюсь каталогами интернет-магазинов, вот пример медного. Там самый большой выбор какой я встречал. Ещё хорошо, что все подробно описывается — состав, применения, и т.д.

Хорошая советская книга на тему статьи:

• Карпов Ф. Ф. Как выбрать сечение проводов и кабелей, 1973 год / Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В., zip, 1.57 MB, скачан:143 раз./

Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!

(47 оценок, среднее: 4,70 из 5) Загрузка...

samelectric.ru


Смотрите также


Содержание :: Карта сайта :: Правила пользования :: Политика конфиденциальности :: Контакты

about-plants.ru